This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvgt0 and dvlt0 . (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvgt0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| dvgt0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| dvgt0.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| dvgt0lem.d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ 𝑆 ) | ||
| dvgt0lem.o | ⊢ 𝑂 Or ℝ | ||
| dvgt0lem.i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) | ||
| Assertion | dvgt0lem2 | ⊢ ( 𝜑 → 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvgt0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | dvgt0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | dvgt0.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 4 | dvgt0lem.d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ 𝑆 ) | |
| 5 | dvgt0lem.o | ⊢ 𝑂 Or ℝ | |
| 6 | dvgt0lem.i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) | |
| 7 | 6 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) |
| 8 | 7 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 10 | 1 2 9 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 11 | ltso | ⊢ < Or ℝ | |
| 12 | soss | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( < Or ℝ → < Or ( 𝐴 [,] 𝐵 ) ) ) | |
| 13 | 10 11 12 | mpisyl | ⊢ ( 𝜑 → < Or ( 𝐴 [,] 𝐵 ) ) |
| 14 | 5 | a1i | ⊢ ( 𝜑 → 𝑂 Or ℝ ) |
| 15 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 16 | 3 15 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 17 | ssidd | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) | |
| 18 | soisores | ⊢ ( ( ( < Or ( 𝐴 [,] 𝐵 ) ∧ 𝑂 Or ℝ ) ∧ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 19 | 13 14 16 17 18 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 < 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 20 | 8 19 | mpbird | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 21 | ffn | ⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) | |
| 22 | 3 15 21 | 3syl | ⊢ ( 𝜑 → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 23 | fnresdm | ⊢ ( 𝐹 Fn ( 𝐴 [,] 𝐵 ) → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) = 𝐹 ) | |
| 24 | isoeq1 | ⊢ ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) = 𝐹 → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ↔ 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) ) | |
| 25 | 22 23 24 | 3syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ↔ 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 26 | 20 25 | mpbid | ⊢ ( 𝜑 → 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 27 | fnima | ⊢ ( 𝐹 Fn ( 𝐴 [,] 𝐵 ) → ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) = ran 𝐹 ) | |
| 28 | isoeq5 | ⊢ ( ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) = ran 𝐹 → ( 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ↔ 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) | |
| 29 | 22 27 28 | 3syl | ⊢ ( 𝜑 → ( 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ( 𝐹 “ ( 𝐴 [,] 𝐵 ) ) ) ↔ 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) |
| 30 | 26 29 | mpbid | ⊢ ( 𝜑 → 𝐹 Isom < , 𝑂 ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) |