This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a number is divisible by an integer greater than 1 and less than the number, the number is not prime. (Contributed by AV, 24-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsnprmd.g | ⊢ ( 𝜑 → 1 < 𝐴 ) | |
| dvdsnprmd.l | ⊢ ( 𝜑 → 𝐴 < 𝑁 ) | ||
| dvdsnprmd.d | ⊢ ( 𝜑 → 𝐴 ∥ 𝑁 ) | ||
| Assertion | dvdsnprmd | ⊢ ( 𝜑 → ¬ 𝑁 ∈ ℙ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsnprmd.g | ⊢ ( 𝜑 → 1 < 𝐴 ) | |
| 2 | dvdsnprmd.l | ⊢ ( 𝜑 → 𝐴 < 𝑁 ) | |
| 3 | dvdsnprmd.d | ⊢ ( 𝜑 → 𝐴 ∥ 𝑁 ) | |
| 4 | dvdszrcl | ⊢ ( 𝐴 ∥ 𝑁 → ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 5 | divides | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ∥ 𝑁 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝐴 ) = 𝑁 ) ) | |
| 6 | 3 4 5 | 3syl | ⊢ ( 𝜑 → ( 𝐴 ∥ 𝑁 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝐴 ) = 𝑁 ) ) |
| 7 | 2z | ⊢ 2 ∈ ℤ | |
| 8 | 7 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 2 ∈ ℤ ) |
| 9 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 𝑘 ∈ ℤ ) | |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → 𝐴 < 𝑁 ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 𝐴 < 𝑁 ) |
| 12 | breq2 | ⊢ ( ( 𝑘 · 𝐴 ) = 𝑁 → ( 𝐴 < ( 𝑘 · 𝐴 ) ↔ 𝐴 < 𝑁 ) ) | |
| 13 | 12 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ( 𝐴 < ( 𝑘 · 𝐴 ) ↔ 𝐴 < 𝑁 ) ) |
| 14 | 11 13 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 𝐴 < ( 𝑘 · 𝐴 ) ) |
| 15 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ∧ 𝑘 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 17 | zre | ⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) | |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
| 19 | 0lt1 | ⊢ 0 < 1 | |
| 20 | 0red | ⊢ ( 𝐴 ∈ ℤ → 0 ∈ ℝ ) | |
| 21 | 1red | ⊢ ( 𝐴 ∈ ℤ → 1 ∈ ℝ ) | |
| 22 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) | |
| 23 | 20 21 15 22 | syl3anc | ⊢ ( 𝐴 ∈ ℤ → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) |
| 24 | 19 23 | mpani | ⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 → 0 < 𝐴 ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
| 26 | 25 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ∧ 𝑘 ∈ ℤ ) → 0 < 𝐴 ) |
| 27 | 16 18 26 | 3jca | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ∧ 𝑘 ∈ ℤ ) → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 28 | 27 | 3exp | ⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 → ( 𝑘 ∈ ℤ → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 < 𝐴 → ( 𝑘 ∈ ℤ → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) ) ) |
| 30 | 3 4 29 | 3syl | ⊢ ( 𝜑 → ( 1 < 𝐴 → ( 𝑘 ∈ ℤ → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) ) ) |
| 31 | 1 30 | mpd | ⊢ ( 𝜑 → ( 𝑘 ∈ ℤ → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) ) |
| 32 | 31 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 34 | ltmulgt12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝑘 ↔ 𝐴 < ( 𝑘 · 𝐴 ) ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ( 1 < 𝑘 ↔ 𝐴 < ( 𝑘 · 𝐴 ) ) ) |
| 36 | 14 35 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 1 < 𝑘 ) |
| 37 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 38 | 37 | breq1i | ⊢ ( 2 ≤ 𝑘 ↔ ( 1 + 1 ) ≤ 𝑘 ) |
| 39 | 1zzd | ⊢ ( 𝑘 ∈ ℤ → 1 ∈ ℤ ) | |
| 40 | zltp1le | ⊢ ( ( 1 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 1 < 𝑘 ↔ ( 1 + 1 ) ≤ 𝑘 ) ) | |
| 41 | 39 40 | mpancom | ⊢ ( 𝑘 ∈ ℤ → ( 1 < 𝑘 ↔ ( 1 + 1 ) ≤ 𝑘 ) ) |
| 42 | 41 | bicomd | ⊢ ( 𝑘 ∈ ℤ → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 < 𝑘 ) ) |
| 43 | 42 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 < 𝑘 ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 < 𝑘 ) ) |
| 45 | 38 44 | bitrid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ( 2 ≤ 𝑘 ↔ 1 < 𝑘 ) ) |
| 46 | 36 45 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 2 ≤ 𝑘 ) |
| 47 | eluz2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) | |
| 48 | 8 9 46 47 | syl3anbrc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) |
| 49 | 7 | a1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) → 2 ∈ ℤ ) |
| 50 | simpl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℤ ) | |
| 51 | 1zzd | ⊢ ( 𝐴 ∈ ℤ → 1 ∈ ℤ ) | |
| 52 | zltp1le | ⊢ ( ( 1 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 1 < 𝐴 ↔ ( 1 + 1 ) ≤ 𝐴 ) ) | |
| 53 | 51 52 | mpancom | ⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 ↔ ( 1 + 1 ) ≤ 𝐴 ) ) |
| 54 | 53 | biimpa | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) → ( 1 + 1 ) ≤ 𝐴 ) |
| 55 | 37 | breq1i | ⊢ ( 2 ≤ 𝐴 ↔ ( 1 + 1 ) ≤ 𝐴 ) |
| 56 | 54 55 | sylibr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) → 2 ≤ 𝐴 ) |
| 57 | 49 50 56 | 3jca | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) → ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) |
| 58 | 57 | ex | ⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 → ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 < 𝐴 → ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) ) |
| 60 | 3 4 59 | 3syl | ⊢ ( 𝜑 → ( 1 < 𝐴 → ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) ) |
| 61 | 1 60 | mpd | ⊢ ( 𝜑 → ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) |
| 62 | eluz2 | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) | |
| 63 | 61 62 | sylibr | ⊢ ( 𝜑 → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 64 | 63 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 65 | 64 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 66 | nprm | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝑘 · 𝐴 ) ∈ ℙ ) | |
| 67 | 48 65 66 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ¬ ( 𝑘 · 𝐴 ) ∈ ℙ ) |
| 68 | eleq1 | ⊢ ( ( 𝑘 · 𝐴 ) = 𝑁 → ( ( 𝑘 · 𝐴 ) ∈ ℙ ↔ 𝑁 ∈ ℙ ) ) | |
| 69 | 68 | notbid | ⊢ ( ( 𝑘 · 𝐴 ) = 𝑁 → ( ¬ ( 𝑘 · 𝐴 ) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ ) ) |
| 70 | 69 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ( ¬ ( 𝑘 · 𝐴 ) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ ) ) |
| 71 | 67 70 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ¬ 𝑁 ∈ ℙ ) |
| 72 | 71 | rexlimdva2 | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝐴 ) = 𝑁 → ¬ 𝑁 ∈ ℙ ) ) |
| 73 | 6 72 | sylbid | ⊢ ( 𝜑 → ( 𝐴 ∥ 𝑁 → ¬ 𝑁 ∈ ℙ ) ) |
| 74 | 3 73 | mpd | ⊢ ( 𝜑 → ¬ 𝑁 ∈ ℙ ) |