This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a number is divisible by an integer greater than 1 and less than the number, the number is not prime. (Contributed by AV, 24-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsnprmd.g | |- ( ph -> 1 < A ) |
|
| dvdsnprmd.l | |- ( ph -> A < N ) |
||
| dvdsnprmd.d | |- ( ph -> A || N ) |
||
| Assertion | dvdsnprmd | |- ( ph -> -. N e. Prime ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsnprmd.g | |- ( ph -> 1 < A ) |
|
| 2 | dvdsnprmd.l | |- ( ph -> A < N ) |
|
| 3 | dvdsnprmd.d | |- ( ph -> A || N ) |
|
| 4 | dvdszrcl | |- ( A || N -> ( A e. ZZ /\ N e. ZZ ) ) |
|
| 5 | divides | |- ( ( A e. ZZ /\ N e. ZZ ) -> ( A || N <-> E. k e. ZZ ( k x. A ) = N ) ) |
|
| 6 | 3 4 5 | 3syl | |- ( ph -> ( A || N <-> E. k e. ZZ ( k x. A ) = N ) ) |
| 7 | 2z | |- 2 e. ZZ |
|
| 8 | 7 | a1i | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> 2 e. ZZ ) |
| 9 | simplr | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> k e. ZZ ) |
|
| 10 | 2 | adantr | |- ( ( ph /\ k e. ZZ ) -> A < N ) |
| 11 | 10 | adantr | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> A < N ) |
| 12 | breq2 | |- ( ( k x. A ) = N -> ( A < ( k x. A ) <-> A < N ) ) |
|
| 13 | 12 | adantl | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( A < ( k x. A ) <-> A < N ) ) |
| 14 | 11 13 | mpbird | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> A < ( k x. A ) ) |
| 15 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 16 | 15 | 3ad2ant1 | |- ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> A e. RR ) |
| 17 | zre | |- ( k e. ZZ -> k e. RR ) |
|
| 18 | 17 | 3ad2ant3 | |- ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> k e. RR ) |
| 19 | 0lt1 | |- 0 < 1 |
|
| 20 | 0red | |- ( A e. ZZ -> 0 e. RR ) |
|
| 21 | 1red | |- ( A e. ZZ -> 1 e. RR ) |
|
| 22 | lttr | |- ( ( 0 e. RR /\ 1 e. RR /\ A e. RR ) -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
|
| 23 | 20 21 15 22 | syl3anc | |- ( A e. ZZ -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
| 24 | 19 23 | mpani | |- ( A e. ZZ -> ( 1 < A -> 0 < A ) ) |
| 25 | 24 | imp | |- ( ( A e. ZZ /\ 1 < A ) -> 0 < A ) |
| 26 | 25 | 3adant3 | |- ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> 0 < A ) |
| 27 | 16 18 26 | 3jca | |- ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> ( A e. RR /\ k e. RR /\ 0 < A ) ) |
| 28 | 27 | 3exp | |- ( A e. ZZ -> ( 1 < A -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) ) |
| 29 | 28 | adantr | |- ( ( A e. ZZ /\ N e. ZZ ) -> ( 1 < A -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) ) |
| 30 | 3 4 29 | 3syl | |- ( ph -> ( 1 < A -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) ) |
| 31 | 1 30 | mpd | |- ( ph -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) |
| 32 | 31 | imp | |- ( ( ph /\ k e. ZZ ) -> ( A e. RR /\ k e. RR /\ 0 < A ) ) |
| 33 | 32 | adantr | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( A e. RR /\ k e. RR /\ 0 < A ) ) |
| 34 | ltmulgt12 | |- ( ( A e. RR /\ k e. RR /\ 0 < A ) -> ( 1 < k <-> A < ( k x. A ) ) ) |
|
| 35 | 33 34 | syl | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( 1 < k <-> A < ( k x. A ) ) ) |
| 36 | 14 35 | mpbird | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> 1 < k ) |
| 37 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 38 | 37 | breq1i | |- ( 2 <_ k <-> ( 1 + 1 ) <_ k ) |
| 39 | 1zzd | |- ( k e. ZZ -> 1 e. ZZ ) |
|
| 40 | zltp1le | |- ( ( 1 e. ZZ /\ k e. ZZ ) -> ( 1 < k <-> ( 1 + 1 ) <_ k ) ) |
|
| 41 | 39 40 | mpancom | |- ( k e. ZZ -> ( 1 < k <-> ( 1 + 1 ) <_ k ) ) |
| 42 | 41 | bicomd | |- ( k e. ZZ -> ( ( 1 + 1 ) <_ k <-> 1 < k ) ) |
| 43 | 42 | adantl | |- ( ( ph /\ k e. ZZ ) -> ( ( 1 + 1 ) <_ k <-> 1 < k ) ) |
| 44 | 43 | adantr | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( ( 1 + 1 ) <_ k <-> 1 < k ) ) |
| 45 | 38 44 | bitrid | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( 2 <_ k <-> 1 < k ) ) |
| 46 | 36 45 | mpbird | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> 2 <_ k ) |
| 47 | eluz2 | |- ( k e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ k e. ZZ /\ 2 <_ k ) ) |
|
| 48 | 8 9 46 47 | syl3anbrc | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> k e. ( ZZ>= ` 2 ) ) |
| 49 | 7 | a1i | |- ( ( A e. ZZ /\ 1 < A ) -> 2 e. ZZ ) |
| 50 | simpl | |- ( ( A e. ZZ /\ 1 < A ) -> A e. ZZ ) |
|
| 51 | 1zzd | |- ( A e. ZZ -> 1 e. ZZ ) |
|
| 52 | zltp1le | |- ( ( 1 e. ZZ /\ A e. ZZ ) -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) |
|
| 53 | 51 52 | mpancom | |- ( A e. ZZ -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) |
| 54 | 53 | biimpa | |- ( ( A e. ZZ /\ 1 < A ) -> ( 1 + 1 ) <_ A ) |
| 55 | 37 | breq1i | |- ( 2 <_ A <-> ( 1 + 1 ) <_ A ) |
| 56 | 54 55 | sylibr | |- ( ( A e. ZZ /\ 1 < A ) -> 2 <_ A ) |
| 57 | 49 50 56 | 3jca | |- ( ( A e. ZZ /\ 1 < A ) -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) |
| 58 | 57 | ex | |- ( A e. ZZ -> ( 1 < A -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) ) |
| 59 | 58 | adantr | |- ( ( A e. ZZ /\ N e. ZZ ) -> ( 1 < A -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) ) |
| 60 | 3 4 59 | 3syl | |- ( ph -> ( 1 < A -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) ) |
| 61 | 1 60 | mpd | |- ( ph -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) |
| 62 | eluz2 | |- ( A e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) |
|
| 63 | 61 62 | sylibr | |- ( ph -> A e. ( ZZ>= ` 2 ) ) |
| 64 | 63 | adantr | |- ( ( ph /\ k e. ZZ ) -> A e. ( ZZ>= ` 2 ) ) |
| 65 | 64 | adantr | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> A e. ( ZZ>= ` 2 ) ) |
| 66 | nprm | |- ( ( k e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) ) -> -. ( k x. A ) e. Prime ) |
|
| 67 | 48 65 66 | syl2anc | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> -. ( k x. A ) e. Prime ) |
| 68 | eleq1 | |- ( ( k x. A ) = N -> ( ( k x. A ) e. Prime <-> N e. Prime ) ) |
|
| 69 | 68 | notbid | |- ( ( k x. A ) = N -> ( -. ( k x. A ) e. Prime <-> -. N e. Prime ) ) |
| 70 | 69 | adantl | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( -. ( k x. A ) e. Prime <-> -. N e. Prime ) ) |
| 71 | 67 70 | mpbid | |- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> -. N e. Prime ) |
| 72 | 71 | rexlimdva2 | |- ( ph -> ( E. k e. ZZ ( k x. A ) = N -> -. N e. Prime ) ) |
| 73 | 6 72 | sylbid | |- ( ph -> ( A || N -> -. N e. Prime ) ) |
| 74 | 3 73 | mpd | |- ( ph -> -. N e. Prime ) |