This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime number is either 2 or odd. (Contributed by AV, 19-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prm2orodd | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ ¬ 2 ∥ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn | ⊢ 2 ∈ ℕ | |
| 2 | dvdsprime | ⊢ ( ( 𝑃 ∈ ℙ ∧ 2 ∈ ℕ ) → ( 2 ∥ 𝑃 ↔ ( 2 = 𝑃 ∨ 2 = 1 ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝑃 ∈ ℙ → ( 2 ∥ 𝑃 ↔ ( 2 = 𝑃 ∨ 2 = 1 ) ) ) |
| 4 | eqcom | ⊢ ( 2 = 𝑃 ↔ 𝑃 = 2 ) | |
| 5 | 4 | biimpi | ⊢ ( 2 = 𝑃 → 𝑃 = 2 ) |
| 6 | 1ne2 | ⊢ 1 ≠ 2 | |
| 7 | necom | ⊢ ( 1 ≠ 2 ↔ 2 ≠ 1 ) | |
| 8 | eqneqall | ⊢ ( 2 = 1 → ( 2 ≠ 1 → 𝑃 = 2 ) ) | |
| 9 | 8 | com12 | ⊢ ( 2 ≠ 1 → ( 2 = 1 → 𝑃 = 2 ) ) |
| 10 | 7 9 | sylbi | ⊢ ( 1 ≠ 2 → ( 2 = 1 → 𝑃 = 2 ) ) |
| 11 | 6 10 | ax-mp | ⊢ ( 2 = 1 → 𝑃 = 2 ) |
| 12 | 5 11 | jaoi | ⊢ ( ( 2 = 𝑃 ∨ 2 = 1 ) → 𝑃 = 2 ) |
| 13 | 3 12 | biimtrdi | ⊢ ( 𝑃 ∈ ℙ → ( 2 ∥ 𝑃 → 𝑃 = 2 ) ) |
| 14 | 13 | con3d | ⊢ ( 𝑃 ∈ ℙ → ( ¬ 𝑃 = 2 → ¬ 2 ∥ 𝑃 ) ) |
| 15 | 14 | orrd | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 2 ∨ ¬ 2 ∥ 𝑃 ) ) |