This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fsumfldivdiag . (Contributed by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fsumfldivdiag.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| Assertion | fsumfldivdiaglem | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumfldivdiag.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) | |
| 3 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝐴 ∈ ℝ ) |
| 4 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) | |
| 5 | fznnfl | ⊢ ( 𝐴 ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴 ) ) ) | |
| 6 | 3 5 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴 ) ) ) |
| 7 | 4 6 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴 ) ) |
| 8 | 7 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑛 ∈ ℕ ) |
| 9 | 3 8 | nndivred | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝐴 / 𝑛 ) ∈ ℝ ) |
| 10 | fznnfl | ⊢ ( ( 𝐴 / 𝑛 ) ∈ ℝ → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( 𝐴 / 𝑛 ) ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( 𝐴 / 𝑛 ) ) ) ) |
| 12 | 2 11 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 13 | 12 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑚 ∈ ℕ ) |
| 14 | 13 | nnred | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑚 ∈ ℝ ) |
| 15 | 12 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑚 ≤ ( 𝐴 / 𝑛 ) ) |
| 16 | 3 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝐴 ∈ ℂ ) |
| 17 | 16 | mullidd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 18 | 8 | nnge1d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 1 ≤ 𝑛 ) |
| 19 | 1red | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 1 ∈ ℝ ) | |
| 20 | 8 | nnred | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑛 ∈ ℝ ) |
| 21 | 0red | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 0 ∈ ℝ ) | |
| 22 | 8 13 | nnmulcld | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑛 · 𝑚 ) ∈ ℕ ) |
| 23 | 22 | nnred | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑛 · 𝑚 ) ∈ ℝ ) |
| 24 | 22 | nngt0d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 0 < ( 𝑛 · 𝑚 ) ) |
| 25 | 8 | nngt0d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 0 < 𝑛 ) |
| 26 | lemuldiv2 | ⊢ ( ( 𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( 𝑛 · 𝑚 ) ≤ 𝐴 ↔ 𝑚 ≤ ( 𝐴 / 𝑛 ) ) ) | |
| 27 | 14 3 20 25 26 | syl112anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( ( 𝑛 · 𝑚 ) ≤ 𝐴 ↔ 𝑚 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 28 | 15 27 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑛 · 𝑚 ) ≤ 𝐴 ) |
| 29 | 21 23 3 24 28 | ltletrd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 0 < 𝐴 ) |
| 30 | lemul1 | ⊢ ( ( 1 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ 𝑛 ↔ ( 1 · 𝐴 ) ≤ ( 𝑛 · 𝐴 ) ) ) | |
| 31 | 19 20 3 29 30 | syl112anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 1 ≤ 𝑛 ↔ ( 1 · 𝐴 ) ≤ ( 𝑛 · 𝐴 ) ) ) |
| 32 | 18 31 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 1 · 𝐴 ) ≤ ( 𝑛 · 𝐴 ) ) |
| 33 | 17 32 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝐴 ≤ ( 𝑛 · 𝐴 ) ) |
| 34 | ledivmul | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( 𝐴 / 𝑛 ) ≤ 𝐴 ↔ 𝐴 ≤ ( 𝑛 · 𝐴 ) ) ) | |
| 35 | 3 3 20 25 34 | syl112anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( ( 𝐴 / 𝑛 ) ≤ 𝐴 ↔ 𝐴 ≤ ( 𝑛 · 𝐴 ) ) ) |
| 36 | 33 35 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝐴 / 𝑛 ) ≤ 𝐴 ) |
| 37 | 14 9 3 15 36 | letrd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑚 ≤ 𝐴 ) |
| 38 | fznnfl | ⊢ ( 𝐴 ∈ ℝ → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ 𝐴 ) ) ) | |
| 39 | 3 38 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ 𝐴 ) ) ) |
| 40 | 13 37 39 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 41 | 13 | nngt0d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 0 < 𝑚 ) |
| 42 | lemuldiv | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑚 ∈ ℝ ∧ 0 < 𝑚 ) ) → ( ( 𝑛 · 𝑚 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑚 ) ) ) | |
| 43 | 20 3 14 41 42 | syl112anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( ( 𝑛 · 𝑚 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑚 ) ) ) |
| 44 | 28 43 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑛 ≤ ( 𝐴 / 𝑚 ) ) |
| 45 | 3 13 | nndivred | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝐴 / 𝑚 ) ∈ ℝ ) |
| 46 | fznnfl | ⊢ ( ( 𝐴 / 𝑚 ) ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑚 ) ) ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑚 ) ) ) ) |
| 48 | 8 44 47 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) |
| 49 | 40 48 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) ) |
| 50 | 49 | ex | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) ) ) |