This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdivcncf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvdivcncf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dvdivcncf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ( ℂ ∖ { 0 } ) ) | ||
| dvdivcncf.fdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) ) | ||
| dvdivcncf.gdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) | ||
| Assertion | dvdivcncf | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f / 𝐺 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdivcncf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvdivcncf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 3 | dvdivcncf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ( ℂ ∖ { 0 } ) ) | |
| 4 | dvdivcncf.fdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 5 | dvdivcncf.gdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 6 | cncff | ⊢ ( ( 𝑆 D 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) | |
| 7 | fdm | ⊢ ( ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | |
| 8 | 4 6 7 | 3syl | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
| 9 | cncff | ⊢ ( ( 𝑆 D 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) | |
| 10 | fdm | ⊢ ( ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ → dom ( 𝑆 D 𝐺 ) = 𝑋 ) | |
| 11 | 5 9 10 | 3syl | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) |
| 12 | 1 2 3 8 11 | dvdivf | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f / 𝐺 ) ) = ( ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f − ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ∘f / ( 𝐺 ∘f · 𝐺 ) ) ) |
| 13 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 14 | sseq1 | ⊢ ( 𝑆 = ℝ → ( 𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ ) ) | |
| 15 | 13 14 | mpbiri | ⊢ ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) |
| 16 | eqimss | ⊢ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) | |
| 17 | 15 16 | pm3.2i | ⊢ ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) |
| 18 | elpri | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) | |
| 19 | 1 18 | syl | ⊢ ( 𝜑 → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
| 20 | pm3.44 | ⊢ ( ( ( 𝑆 = ℝ → 𝑆 ⊆ ℂ ) ∧ ( 𝑆 = ℂ → 𝑆 ⊆ ℂ ) ) → ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → 𝑆 ⊆ ℂ ) ) | |
| 21 | 17 19 20 | mpsyl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 22 | difssd | ⊢ ( 𝜑 → ( ℂ ∖ { 0 } ) ⊆ ℂ ) | |
| 23 | 3 22 | fssd | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) |
| 24 | dvbsss | ⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 | |
| 25 | 8 24 | eqsstrrdi | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 26 | dvcn | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐺 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐺 ) = 𝑋 ) → 𝐺 ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 27 | 21 23 25 11 26 | syl31anc | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 –cn→ ℂ ) ) |
| 28 | 4 27 | mulcncff | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 29 | dvcn | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ 𝑆 ) ∧ dom ( 𝑆 D 𝐹 ) = 𝑋 ) → 𝐹 ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 30 | 21 2 25 8 29 | syl31anc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℂ ) ) |
| 31 | 5 30 | mulcncff | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 32 | 28 31 | subcncff | ⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f − ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 33 | eldifi | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → 𝑥 ∈ ℂ ) | |
| 34 | 33 | adantr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ∈ ℂ ) |
| 35 | eldifi | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ∈ ℂ ) | |
| 36 | 35 | adantl | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
| 37 | 34 36 | mulcld | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 38 | eldifsni | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → 𝑥 ≠ 0 ) | |
| 39 | 38 | adantr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
| 40 | eldifsni | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ≠ 0 ) | |
| 41 | 40 | adantl | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ≠ 0 ) |
| 42 | 34 36 39 41 | mulne0d | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
| 43 | eldifsn | ⊢ ( ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑥 · 𝑦 ) ∈ ℂ ∧ ( 𝑥 · 𝑦 ) ≠ 0 ) ) | |
| 44 | 37 42 43 | sylanbrc | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 45 | 44 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 46 | 1 25 | ssexd | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 47 | inidm | ⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 | |
| 48 | 45 3 3 46 46 47 | off | ⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐺 ) : 𝑋 ⟶ ( ℂ ∖ { 0 } ) ) |
| 49 | 27 27 | mulcncff | ⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 50 | cncfcdm | ⊢ ( ( ( ℂ ∖ { 0 } ) ⊆ ℂ ∧ ( 𝐺 ∘f · 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) → ( ( 𝐺 ∘f · 𝐺 ) ∈ ( 𝑋 –cn→ ( ℂ ∖ { 0 } ) ) ↔ ( 𝐺 ∘f · 𝐺 ) : 𝑋 ⟶ ( ℂ ∖ { 0 } ) ) ) | |
| 51 | 22 49 50 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 ∘f · 𝐺 ) ∈ ( 𝑋 –cn→ ( ℂ ∖ { 0 } ) ) ↔ ( 𝐺 ∘f · 𝐺 ) : 𝑋 ⟶ ( ℂ ∖ { 0 } ) ) ) |
| 52 | 48 51 | mpbird | ⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐺 ) ∈ ( 𝑋 –cn→ ( ℂ ∖ { 0 } ) ) ) |
| 53 | 32 52 | divcncff | ⊢ ( 𝜑 → ( ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f − ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ∘f / ( 𝐺 ∘f · 𝐺 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 54 | 12 53 | eqeltrd | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f / 𝐺 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |