This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a function with bounded derivative, on an open interval, here is an absolute bound to the difference of the image of two points in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvbdfbdioolem1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| dvbdfbdioolem1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| dvbdfbdioolem1.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | ||
| dvbdfbdioolem1.dmdv | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| dvbdfbdioolem1.k | ⊢ ( 𝜑 → 𝐾 ∈ ℝ ) | ||
| dvbdfbdioolem1.dvbd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝐾 ) | ||
| dvbdfbdioolem1.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | ||
| dvbdfbdioolem1.d | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 (,) 𝐵 ) ) | ||
| Assertion | dvbdfbdioolem1 | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvbdfbdioolem1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | dvbdfbdioolem1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | dvbdfbdioolem1.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | |
| 4 | dvbdfbdioolem1.dmdv | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 5 | dvbdfbdioolem1.k | ⊢ ( 𝜑 → 𝐾 ∈ ℝ ) | |
| 6 | dvbdfbdioolem1.dvbd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝐾 ) | |
| 7 | dvbdfbdioolem1.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 8 | dvbdfbdioolem1.d | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 (,) 𝐵 ) ) | |
| 9 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 10 | 9 7 | sselid | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 11 | ioossre | ⊢ ( 𝐶 (,) 𝐵 ) ⊆ ℝ | |
| 12 | 11 8 | sselid | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 13 | 10 | rexrd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 14 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 15 | ioogtlb | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ( 𝐶 (,) 𝐵 ) ) → 𝐶 < 𝐷 ) | |
| 16 | 13 14 8 15 | syl3anc | ⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
| 17 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 18 | ioogtlb | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝐶 ) | |
| 19 | 17 14 7 18 | syl3anc | ⊢ ( 𝜑 → 𝐴 < 𝐶 ) |
| 20 | iooltub | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ( 𝐶 (,) 𝐵 ) ) → 𝐷 < 𝐵 ) | |
| 21 | 13 14 8 20 | syl3anc | ⊢ ( 𝜑 → 𝐷 < 𝐵 ) |
| 22 | iccssioo | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶 ∧ 𝐷 < 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 23 | 17 14 19 21 22 | syl22anc | ⊢ ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 24 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 25 | 24 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 26 | 3 25 | fssd | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 27 | 9 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 28 | dvcn | ⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) ∧ dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | |
| 29 | 25 26 27 4 28 | syl31anc | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 30 | cncfcdm | ⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) → ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) | |
| 31 | 25 29 30 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 32 | 3 31 | mpbird | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
| 33 | rescncf | ⊢ ( ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) → ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) → ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ∈ ( ( 𝐶 [,] 𝐷 ) –cn→ ℝ ) ) ) | |
| 34 | 23 32 33 | sylc | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ∈ ( ( 𝐶 [,] 𝐷 ) –cn→ ℝ ) ) |
| 35 | 23 27 | sstrd | ⊢ ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) |
| 36 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 37 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 38 | 36 37 | dvres | ⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ∧ ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ ∧ ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) ) |
| 39 | 25 26 27 35 38 | syl22anc | ⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) ) |
| 40 | iccntr | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) = ( 𝐶 (,) 𝐷 ) ) | |
| 41 | 10 12 40 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) = ( 𝐶 (,) 𝐷 ) ) |
| 42 | 41 | reseq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
| 43 | 39 42 | eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
| 44 | 43 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = dom ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
| 45 | 1 10 19 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
| 46 | 12 2 21 | ltled | ⊢ ( 𝜑 → 𝐷 ≤ 𝐵 ) |
| 47 | ioossioo | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 48 | 17 14 45 46 47 | syl22anc | ⊢ ( 𝜑 → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 49 | 48 4 | sseqtrrd | ⊢ ( 𝜑 → ( 𝐶 (,) 𝐷 ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 50 | ssdmres | ⊢ ( ( 𝐶 (,) 𝐷 ) ⊆ dom ( ℝ D 𝐹 ) ↔ dom ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( 𝐶 (,) 𝐷 ) ) | |
| 51 | 49 50 | sylib | ⊢ ( 𝜑 → dom ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( 𝐶 (,) 𝐷 ) ) |
| 52 | 44 51 | eqtrd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( 𝐶 (,) 𝐷 ) ) |
| 53 | 10 12 16 34 52 | mvth | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) |
| 54 | 43 | fveq1d | ⊢ ( 𝜑 → ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ‘ 𝑥 ) ) |
| 55 | fvres | ⊢ ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) | |
| 56 | 54 55 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 57 | 56 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) ) |
| 58 | 57 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) ) |
| 59 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) | |
| 60 | 12 | rexrd | ⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
| 61 | 10 12 16 | ltled | ⊢ ( 𝜑 → 𝐶 ≤ 𝐷 ) |
| 62 | ubicc2 | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ≤ 𝐷 ) → 𝐷 ∈ ( 𝐶 [,] 𝐷 ) ) | |
| 63 | 13 60 61 62 | syl3anc | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 [,] 𝐷 ) ) |
| 64 | fvres | ⊢ ( 𝐷 ∈ ( 𝐶 [,] 𝐷 ) → ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) = ( 𝐹 ‘ 𝐷 ) ) | |
| 65 | 63 64 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) = ( 𝐹 ‘ 𝐷 ) ) |
| 66 | lbicc2 | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ≤ 𝐷 ) → 𝐶 ∈ ( 𝐶 [,] 𝐷 ) ) | |
| 67 | 13 60 61 66 | syl3anc | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐶 [,] 𝐷 ) ) |
| 68 | fvres | ⊢ ( 𝐶 ∈ ( 𝐶 [,] 𝐷 ) → ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) = ( 𝐹 ‘ 𝐶 ) ) | |
| 69 | 67 68 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) = ( 𝐹 ‘ 𝐶 ) ) |
| 70 | 65 69 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) = ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) |
| 71 | 70 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) |
| 72 | 71 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) |
| 73 | 58 59 72 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) |
| 74 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) | |
| 75 | 74 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 76 | 23 63 | sseldd | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 77 | 3 76 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐷 ) ∈ ℝ ) |
| 78 | 3 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) |
| 79 | 77 78 | resubcld | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ ℝ ) |
| 80 | 79 | recnd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ ℂ ) |
| 81 | 80 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ ℂ ) |
| 82 | dvfre | ⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) | |
| 83 | 3 27 82 | syl2anc | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 84 | 4 | feq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 85 | 83 84 | mpbid | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 86 | 85 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 87 | 48 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 88 | 86 87 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 89 | 88 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 90 | 89 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 91 | 12 10 | resubcld | ⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ∈ ℝ ) |
| 92 | 91 | recnd | ⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ∈ ℂ ) |
| 93 | 92 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( 𝐷 − 𝐶 ) ∈ ℂ ) |
| 94 | 10 12 | posdifd | ⊢ ( 𝜑 → ( 𝐶 < 𝐷 ↔ 0 < ( 𝐷 − 𝐶 ) ) ) |
| 95 | 16 94 | mpbid | ⊢ ( 𝜑 → 0 < ( 𝐷 − 𝐶 ) ) |
| 96 | 95 | gt0ne0d | ⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ≠ 0 ) |
| 97 | 96 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( 𝐷 − 𝐶 ) ≠ 0 ) |
| 98 | 81 90 93 97 | divmul3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) · ( 𝐷 − 𝐶 ) ) ) ) |
| 99 | 75 98 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) · ( 𝐷 − 𝐶 ) ) ) |
| 100 | 99 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) · ( 𝐷 − 𝐶 ) ) ) ) |
| 101 | 92 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( 𝐷 − 𝐶 ) ∈ ℂ ) |
| 102 | 89 101 | absmuld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) · ( 𝐷 − 𝐶 ) ) ) = ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) ) |
| 103 | 102 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) · ( 𝐷 − 𝐶 ) ) ) = ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) ) |
| 104 | 100 103 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) ) |
| 105 | 10 12 61 | abssubge0d | ⊢ ( 𝜑 → ( abs ‘ ( 𝐷 − 𝐶 ) ) = ( 𝐷 − 𝐶 ) ) |
| 106 | 105 | oveq2d | ⊢ ( 𝜑 → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) = ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( 𝐷 − 𝐶 ) ) ) |
| 107 | 106 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) = ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( 𝐷 − 𝐶 ) ) ) |
| 108 | 104 107 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( 𝐷 − 𝐶 ) ) ) |
| 109 | 89 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 110 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → 𝐾 ∈ ℝ ) |
| 111 | 91 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( 𝐷 − 𝐶 ) ∈ ℝ ) |
| 112 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 113 | 112 91 95 | ltled | ⊢ ( 𝜑 → 0 ≤ ( 𝐷 − 𝐶 ) ) |
| 114 | 113 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → 0 ≤ ( 𝐷 − 𝐶 ) ) |
| 115 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝐾 ) |
| 116 | rspa | ⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝐾 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝐾 ) | |
| 117 | 115 87 116 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝐾 ) |
| 118 | 109 110 111 114 117 | lemul1ad | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( 𝐷 − 𝐶 ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ) |
| 119 | 118 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( 𝐷 − 𝐶 ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ) |
| 120 | 108 119 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ) |
| 121 | 73 120 | syld3an3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ) |
| 122 | 101 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( abs ‘ ( 𝐷 − 𝐶 ) ) ∈ ℝ ) |
| 123 | 2 1 | resubcld | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 124 | 123 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 125 | 89 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → 0 ≤ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 126 | 101 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → 0 ≤ ( abs ‘ ( 𝐷 − 𝐶 ) ) ) |
| 127 | 12 1 2 10 46 45 | le2subd | ⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ≤ ( 𝐵 − 𝐴 ) ) |
| 128 | 105 127 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐷 − 𝐶 ) ) ≤ ( 𝐵 − 𝐴 ) ) |
| 129 | 128 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( abs ‘ ( 𝐷 − 𝐶 ) ) ≤ ( 𝐵 − 𝐴 ) ) |
| 130 | 109 110 122 124 125 126 117 129 | lemul12ad | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) |
| 131 | 130 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) |
| 132 | 104 131 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) |
| 133 | 73 132 | syld3an3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) |
| 134 | 121 133 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) ) |
| 135 | 134 | rexlimdv3a | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) ) ) |
| 136 | 53 135 | mpd | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) ) |