This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdivf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvdivf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dvdivf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ( ℂ ∖ { 0 } ) ) | ||
| dvdivf.fdv | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | ||
| dvdivf.gdv | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) | ||
| Assertion | dvdivf | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f / 𝐺 ) ) = ( ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f − ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ∘f / ( 𝐺 ∘f · 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdivf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvdivf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 3 | dvdivf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ( ℂ ∖ { 0 } ) ) | |
| 4 | dvdivf.fdv | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | |
| 5 | dvdivf.gdv | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) | |
| 6 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 7 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 9 | 4 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 10 | 8 9 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 12 | 2 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 14 | 10 | feqmptd | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 15 | 13 14 | eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 16 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 17 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) | |
| 18 | 1 17 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
| 19 | 5 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ↔ ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) ) |
| 20 | 18 19 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) |
| 21 | 20 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ∈ ℂ ) |
| 22 | 3 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 23 | 22 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 24 | 20 | feqmptd | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 25 | 23 24 | eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 26 | 1 6 11 15 16 21 25 | dvmptdiv | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) − ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) / ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 27 | ovex | ⊢ ( 𝑆 D 𝐹 ) ∈ V | |
| 28 | 27 | dmex | ⊢ dom ( 𝑆 D 𝐹 ) ∈ V |
| 29 | 4 28 | eqeltrrdi | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 30 | 29 6 16 12 22 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f / 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 31 | 30 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f / 𝐺 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) / ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 32 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) − ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ∈ V ) | |
| 33 | 16 | eldifad | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 34 | 33 | sqcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) ∈ ℂ ) |
| 35 | 11 33 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 36 | 21 6 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 37 | 29 11 33 14 22 | offval2 | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 38 | 29 21 6 24 12 | offval2 | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 39 | 29 35 36 37 38 | offval2 | ⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f − ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) − ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 40 | 29 16 16 22 22 | offval2 | ⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 41 | 33 | sqvald | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
| 42 | 41 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 43 | 40 42 | eqtr4d | ⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) ) ) |
| 44 | 29 32 34 39 43 | offval2 | ⊢ ( 𝜑 → ( ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f − ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ∘f / ( 𝐺 ∘f · 𝐺 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) − ( ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) · ( 𝐹 ‘ 𝑥 ) ) ) / ( ( 𝐺 ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 45 | 26 31 44 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f / 𝐺 ) ) = ( ( ( ( 𝑆 D 𝐹 ) ∘f · 𝐺 ) ∘f − ( ( 𝑆 D 𝐺 ) ∘f · 𝐹 ) ) ∘f / ( 𝐺 ∘f · 𝐺 ) ) ) |