This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdval.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| dprdval.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | ||
| Assertion | dprdval | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdval.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | dprdval.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 3 | simpl | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → 𝐺 dom DProd 𝑆 ) | |
| 4 | reldmdprd | ⊢ Rel dom DProd | |
| 5 | 4 | brrelex2i | ⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 ∈ V ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → 𝑆 ∈ V ) |
| 7 | 4 | brrelex1i | ⊢ ( 𝐺 dom DProd 𝑠 → 𝐺 ∈ V ) |
| 8 | breq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 dom DProd 𝑠 ↔ 𝐺 dom DProd 𝑠 ) ) | |
| 9 | oveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 DProd 𝑠 ) = ( 𝐺 DProd 𝑠 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = ( 0g ‘ 𝐺 ) ) | |
| 11 | 10 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = 0 ) |
| 12 | 11 | breq2d | ⊢ ( 𝑔 = 𝐺 → ( ℎ finSupp ( 0g ‘ 𝑔 ) ↔ ℎ finSupp 0 ) ) |
| 13 | 12 | rabbidv | ⊢ ( 𝑔 = 𝐺 → { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } = { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) |
| 14 | oveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 Σg 𝑓 ) = ( 𝐺 Σg 𝑓 ) ) | |
| 15 | 13 14 | mpteq12dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) = ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) ) |
| 16 | 15 | rneqd | ⊢ ( 𝑔 = 𝐺 → ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) ) |
| 17 | 9 16 | eqeq12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ↔ ( 𝐺 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) ) ) |
| 18 | 8 17 | imbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑔 dom DProd 𝑠 → ( 𝑔 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ) ↔ ( 𝐺 dom DProd 𝑠 → ( 𝐺 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) ) ) ) |
| 19 | df-br | ⊢ ( 𝑔 dom DProd 𝑠 ↔ 〈 𝑔 , 𝑠 〉 ∈ dom DProd ) | |
| 20 | fvex | ⊢ ( 𝑠 ‘ 𝑖 ) ∈ V | |
| 21 | 20 | rgenw | ⊢ ∀ 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∈ V |
| 22 | ixpexg | ⊢ ( ∀ 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∈ V → X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∈ V ) | |
| 23 | 21 22 | ax-mp | ⊢ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∈ V |
| 24 | 23 | mptrabex | ⊢ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ∈ V |
| 25 | 24 | rnex | ⊢ ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ∈ V |
| 26 | 25 | rgen2w | ⊢ ∀ 𝑔 ∈ Grp ∀ 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑖 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑖 } ) ( ℎ ‘ 𝑖 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑖 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑖 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ∈ V |
| 27 | df-dprd | ⊢ DProd = ( 𝑔 ∈ Grp , 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑖 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑖 } ) ( ℎ ‘ 𝑖 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑖 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑖 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ↦ ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ) | |
| 28 | 27 | fmpox | ⊢ ( ∀ 𝑔 ∈ Grp ∀ 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑖 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑖 } ) ( ℎ ‘ 𝑖 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑖 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑖 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ∈ V ↔ DProd : ∪ 𝑔 ∈ Grp ( { 𝑔 } × { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑖 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑖 } ) ( ℎ ‘ 𝑖 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑖 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑖 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) ⟶ V ) |
| 29 | 26 28 | mpbi | ⊢ DProd : ∪ 𝑔 ∈ Grp ( { 𝑔 } × { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑖 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑖 } ) ( ℎ ‘ 𝑖 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑖 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑖 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) ⟶ V |
| 30 | 29 | fdmi | ⊢ dom DProd = ∪ 𝑔 ∈ Grp ( { 𝑔 } × { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑖 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑖 } ) ( ℎ ‘ 𝑖 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑖 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑖 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) |
| 31 | 30 | eleq2i | ⊢ ( 〈 𝑔 , 𝑠 〉 ∈ dom DProd ↔ 〈 𝑔 , 𝑠 〉 ∈ ∪ 𝑔 ∈ Grp ( { 𝑔 } × { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑖 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑖 } ) ( ℎ ‘ 𝑖 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑖 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑖 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) ) |
| 32 | opeliunxp | ⊢ ( 〈 𝑔 , 𝑠 〉 ∈ ∪ 𝑔 ∈ Grp ( { 𝑔 } × { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑖 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑖 } ) ( ℎ ‘ 𝑖 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑖 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑖 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) ↔ ( 𝑔 ∈ Grp ∧ 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑖 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑖 } ) ( ℎ ‘ 𝑖 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑖 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑖 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) ) | |
| 33 | 19 31 32 | 3bitri | ⊢ ( 𝑔 dom DProd 𝑠 ↔ ( 𝑔 ∈ Grp ∧ 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑖 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑖 } ) ( ℎ ‘ 𝑖 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑖 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑖 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) ) |
| 34 | 27 | ovmpt4g | ⊢ ( ( 𝑔 ∈ Grp ∧ 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑖 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑖 } ) ( ℎ ‘ 𝑖 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑖 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑖 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ∧ ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ∈ V ) → ( 𝑔 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ) |
| 35 | 25 34 | mp3an3 | ⊢ ( ( 𝑔 ∈ Grp ∧ 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑖 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑖 } ) ( ℎ ‘ 𝑖 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑖 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑖 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ) → ( 𝑔 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ) |
| 36 | 33 35 | sylbi | ⊢ ( 𝑔 dom DProd 𝑠 → ( 𝑔 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ) |
| 37 | 18 36 | vtoclg | ⊢ ( 𝐺 ∈ V → ( 𝐺 dom DProd 𝑠 → ( 𝐺 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) ) ) |
| 38 | 7 37 | mpcom | ⊢ ( 𝐺 dom DProd 𝑠 → ( 𝐺 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) ) |
| 39 | 38 | sbcth | ⊢ ( 𝑆 ∈ V → [ 𝑆 / 𝑠 ] ( 𝐺 dom DProd 𝑠 → ( 𝐺 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) ) ) |
| 40 | 6 39 | syl | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → [ 𝑆 / 𝑠 ] ( 𝐺 dom DProd 𝑠 → ( 𝐺 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) ) ) |
| 41 | simpr | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → 𝑠 = 𝑆 ) | |
| 42 | 41 | breq2d | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → ( 𝐺 dom DProd 𝑠 ↔ 𝐺 dom DProd 𝑆 ) ) |
| 43 | 41 | oveq2d | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → ( 𝐺 DProd 𝑠 ) = ( 𝐺 DProd 𝑆 ) ) |
| 44 | 41 | dmeqd | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → dom 𝑠 = dom 𝑆 ) |
| 45 | simplr | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → dom 𝑆 = 𝐼 ) | |
| 46 | 44 45 | eqtrd | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → dom 𝑠 = 𝐼 ) |
| 47 | 46 | ixpeq1d | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) = X 𝑖 ∈ 𝐼 ( 𝑠 ‘ 𝑖 ) ) |
| 48 | 41 | fveq1d | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → ( 𝑠 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑖 ) ) |
| 49 | 48 | ixpeq2dv | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → X 𝑖 ∈ 𝐼 ( 𝑠 ‘ 𝑖 ) = X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ) |
| 50 | 47 49 | eqtrd | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) = X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ) |
| 51 | 50 | rabeqdv | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) |
| 52 | 51 2 | eqtr4di | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } = 𝑊 ) |
| 53 | eqidd | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → ( 𝐺 Σg 𝑓 ) = ( 𝐺 Σg 𝑓 ) ) | |
| 54 | 52 53 | mpteq12dv | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) = ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) ) |
| 55 | 54 | rneqd | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) = ran ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) ) |
| 56 | 43 55 | eqeq12d | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → ( ( 𝐺 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) ↔ ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) ) ) |
| 57 | 42 56 | imbi12d | ⊢ ( ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) ∧ 𝑠 = 𝑆 ) → ( ( 𝐺 dom DProd 𝑠 → ( 𝐺 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) ) ↔ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) ) ) ) |
| 58 | 6 57 | sbcied | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → ( [ 𝑆 / 𝑠 ] ( 𝐺 dom DProd 𝑠 → ( 𝐺 DProd 𝑠 ) = ran ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ dom 𝑠 ( 𝑠 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ↦ ( 𝐺 Σg 𝑓 ) ) ) ↔ ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) ) ) ) |
| 59 | 40 58 | mpbid | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 dom DProd 𝑆 → ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) ) ) |
| 60 | 3 59 | mpd | ⊢ ( ( 𝐺 dom DProd 𝑆 ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 DProd 𝑆 ) = ran ( 𝑓 ∈ 𝑊 ↦ ( 𝐺 Σg 𝑓 ) ) ) |