This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of division: if A and B are complex numbers with B nonzero, then ( A / B ) is the (unique) complex number such that ( B x. x ) = A . (Contributed by NM, 8-May-1999) (Revised by Mario Carneiro, 17-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | ⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) | |
| 2 | eqeq2 | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑦 · 𝑥 ) = 𝑧 ↔ ( 𝑦 · 𝑥 ) = 𝐴 ) ) | |
| 3 | 2 | riotabidv | ⊢ ( 𝑧 = 𝐴 → ( ℩ 𝑥 ∈ ℂ ( 𝑦 · 𝑥 ) = 𝑧 ) = ( ℩ 𝑥 ∈ ℂ ( 𝑦 · 𝑥 ) = 𝐴 ) ) |
| 4 | oveq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 · 𝑥 ) = ( 𝐵 · 𝑥 ) ) | |
| 5 | 4 | eqeq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 · 𝑥 ) = 𝐴 ↔ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 6 | 5 | riotabidv | ⊢ ( 𝑦 = 𝐵 → ( ℩ 𝑥 ∈ ℂ ( 𝑦 · 𝑥 ) = 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 7 | df-div | ⊢ / = ( 𝑧 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑥 ∈ ℂ ( 𝑦 · 𝑥 ) = 𝑧 ) ) | |
| 8 | riotaex | ⊢ ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ∈ V | |
| 9 | 3 6 7 8 | ovmpo | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 10 | 1 9 | sylan2br | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 11 | 10 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |