This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem0.1 | ⊢ 𝑁 ∈ ℤ | |
| divalglem0.2 | ⊢ 𝐷 ∈ ℤ | ||
| divalglem1.3 | ⊢ 𝐷 ≠ 0 | ||
| divalglem2.4 | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑟 ) } | ||
| Assertion | divalglem4 | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.1 | ⊢ 𝑁 ∈ ℤ | |
| 2 | divalglem0.2 | ⊢ 𝐷 ∈ ℤ | |
| 3 | divalglem1.3 | ⊢ 𝐷 ≠ 0 | |
| 4 | divalglem2.4 | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑟 ) } | |
| 5 | nn0z | ⊢ ( 𝑧 ∈ ℕ0 → 𝑧 ∈ ℤ ) | |
| 6 | zsubcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑁 − 𝑧 ) ∈ ℤ ) | |
| 7 | 1 5 6 | sylancr | ⊢ ( 𝑧 ∈ ℕ0 → ( 𝑁 − 𝑧 ) ∈ ℤ ) |
| 8 | divides | ⊢ ( ( 𝐷 ∈ ℤ ∧ ( 𝑁 − 𝑧 ) ∈ ℤ ) → ( 𝐷 ∥ ( 𝑁 − 𝑧 ) ↔ ∃ 𝑞 ∈ ℤ ( 𝑞 · 𝐷 ) = ( 𝑁 − 𝑧 ) ) ) | |
| 9 | 2 7 8 | sylancr | ⊢ ( 𝑧 ∈ ℕ0 → ( 𝐷 ∥ ( 𝑁 − 𝑧 ) ↔ ∃ 𝑞 ∈ ℤ ( 𝑞 · 𝐷 ) = ( 𝑁 − 𝑧 ) ) ) |
| 10 | nn0cn | ⊢ ( 𝑧 ∈ ℕ0 → 𝑧 ∈ ℂ ) | |
| 11 | zmulcl | ⊢ ( ( 𝑞 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝑞 · 𝐷 ) ∈ ℤ ) | |
| 12 | 2 11 | mpan2 | ⊢ ( 𝑞 ∈ ℤ → ( 𝑞 · 𝐷 ) ∈ ℤ ) |
| 13 | 12 | zcnd | ⊢ ( 𝑞 ∈ ℤ → ( 𝑞 · 𝐷 ) ∈ ℂ ) |
| 14 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 15 | 1 14 | ax-mp | ⊢ 𝑁 ∈ ℂ |
| 16 | subadd | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ ( 𝑞 · 𝐷 ) ∈ ℂ ) → ( ( 𝑁 − 𝑧 ) = ( 𝑞 · 𝐷 ) ↔ ( 𝑧 + ( 𝑞 · 𝐷 ) ) = 𝑁 ) ) | |
| 17 | 15 16 | mp3an1 | ⊢ ( ( 𝑧 ∈ ℂ ∧ ( 𝑞 · 𝐷 ) ∈ ℂ ) → ( ( 𝑁 − 𝑧 ) = ( 𝑞 · 𝐷 ) ↔ ( 𝑧 + ( 𝑞 · 𝐷 ) ) = 𝑁 ) ) |
| 18 | addcom | ⊢ ( ( 𝑧 ∈ ℂ ∧ ( 𝑞 · 𝐷 ) ∈ ℂ ) → ( 𝑧 + ( 𝑞 · 𝐷 ) ) = ( ( 𝑞 · 𝐷 ) + 𝑧 ) ) | |
| 19 | 18 | eqeq1d | ⊢ ( ( 𝑧 ∈ ℂ ∧ ( 𝑞 · 𝐷 ) ∈ ℂ ) → ( ( 𝑧 + ( 𝑞 · 𝐷 ) ) = 𝑁 ↔ ( ( 𝑞 · 𝐷 ) + 𝑧 ) = 𝑁 ) ) |
| 20 | 17 19 | bitrd | ⊢ ( ( 𝑧 ∈ ℂ ∧ ( 𝑞 · 𝐷 ) ∈ ℂ ) → ( ( 𝑁 − 𝑧 ) = ( 𝑞 · 𝐷 ) ↔ ( ( 𝑞 · 𝐷 ) + 𝑧 ) = 𝑁 ) ) |
| 21 | 10 13 20 | syl2an | ⊢ ( ( 𝑧 ∈ ℕ0 ∧ 𝑞 ∈ ℤ ) → ( ( 𝑁 − 𝑧 ) = ( 𝑞 · 𝐷 ) ↔ ( ( 𝑞 · 𝐷 ) + 𝑧 ) = 𝑁 ) ) |
| 22 | eqcom | ⊢ ( ( 𝑁 − 𝑧 ) = ( 𝑞 · 𝐷 ) ↔ ( 𝑞 · 𝐷 ) = ( 𝑁 − 𝑧 ) ) | |
| 23 | eqcom | ⊢ ( ( ( 𝑞 · 𝐷 ) + 𝑧 ) = 𝑁 ↔ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑧 ) ) | |
| 24 | 21 22 23 | 3bitr3g | ⊢ ( ( 𝑧 ∈ ℕ0 ∧ 𝑞 ∈ ℤ ) → ( ( 𝑞 · 𝐷 ) = ( 𝑁 − 𝑧 ) ↔ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑧 ) ) ) |
| 25 | 24 | rexbidva | ⊢ ( 𝑧 ∈ ℕ0 → ( ∃ 𝑞 ∈ ℤ ( 𝑞 · 𝐷 ) = ( 𝑁 − 𝑧 ) ↔ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑧 ) ) ) |
| 26 | 9 25 | bitrd | ⊢ ( 𝑧 ∈ ℕ0 → ( 𝐷 ∥ ( 𝑁 − 𝑧 ) ↔ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑧 ) ) ) |
| 27 | 26 | pm5.32i | ⊢ ( ( 𝑧 ∈ ℕ0 ∧ 𝐷 ∥ ( 𝑁 − 𝑧 ) ) ↔ ( 𝑧 ∈ ℕ0 ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑧 ) ) ) |
| 28 | oveq2 | ⊢ ( 𝑟 = 𝑧 → ( 𝑁 − 𝑟 ) = ( 𝑁 − 𝑧 ) ) | |
| 29 | 28 | breq2d | ⊢ ( 𝑟 = 𝑧 → ( 𝐷 ∥ ( 𝑁 − 𝑟 ) ↔ 𝐷 ∥ ( 𝑁 − 𝑧 ) ) ) |
| 30 | 29 4 | elrab2 | ⊢ ( 𝑧 ∈ 𝑆 ↔ ( 𝑧 ∈ ℕ0 ∧ 𝐷 ∥ ( 𝑁 − 𝑧 ) ) ) |
| 31 | oveq2 | ⊢ ( 𝑟 = 𝑧 → ( ( 𝑞 · 𝐷 ) + 𝑟 ) = ( ( 𝑞 · 𝐷 ) + 𝑧 ) ) | |
| 32 | 31 | eqeq2d | ⊢ ( 𝑟 = 𝑧 → ( 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ↔ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑧 ) ) ) |
| 33 | 32 | rexbidv | ⊢ ( 𝑟 = 𝑧 → ( ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) ↔ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑧 ) ) ) |
| 34 | 33 | elrab | ⊢ ( 𝑧 ∈ { 𝑟 ∈ ℕ0 ∣ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) } ↔ ( 𝑧 ∈ ℕ0 ∧ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑧 ) ) ) |
| 35 | 27 30 34 | 3bitr4i | ⊢ ( 𝑧 ∈ 𝑆 ↔ 𝑧 ∈ { 𝑟 ∈ ℕ0 ∣ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) } ) |
| 36 | 35 | eqriv | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ ∃ 𝑞 ∈ ℤ 𝑁 = ( ( 𝑞 · 𝐷 ) + 𝑟 ) } |