This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011) (Revised by AV, 2-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem0.1 | ⊢ 𝑁 ∈ ℤ | |
| divalglem0.2 | ⊢ 𝐷 ∈ ℤ | ||
| divalglem1.3 | ⊢ 𝐷 ≠ 0 | ||
| divalglem2.4 | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑟 ) } | ||
| divalglem5.5 | ⊢ 𝑅 = inf ( 𝑆 , ℝ , < ) | ||
| Assertion | divalglem5 | ⊢ ( 0 ≤ 𝑅 ∧ 𝑅 < ( abs ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.1 | ⊢ 𝑁 ∈ ℤ | |
| 2 | divalglem0.2 | ⊢ 𝐷 ∈ ℤ | |
| 3 | divalglem1.3 | ⊢ 𝐷 ≠ 0 | |
| 4 | divalglem2.4 | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑟 ) } | |
| 5 | divalglem5.5 | ⊢ 𝑅 = inf ( 𝑆 , ℝ , < ) | |
| 6 | 1 2 3 4 | divalglem2 | ⊢ inf ( 𝑆 , ℝ , < ) ∈ 𝑆 |
| 7 | 5 6 | eqeltri | ⊢ 𝑅 ∈ 𝑆 |
| 8 | oveq2 | ⊢ ( 𝑥 = 𝑅 → ( 𝑁 − 𝑥 ) = ( 𝑁 − 𝑅 ) ) | |
| 9 | 8 | breq2d | ⊢ ( 𝑥 = 𝑅 → ( 𝐷 ∥ ( 𝑁 − 𝑥 ) ↔ 𝐷 ∥ ( 𝑁 − 𝑅 ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑟 = 𝑥 → ( 𝑁 − 𝑟 ) = ( 𝑁 − 𝑥 ) ) | |
| 11 | 10 | breq2d | ⊢ ( 𝑟 = 𝑥 → ( 𝐷 ∥ ( 𝑁 − 𝑟 ) ↔ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ) |
| 12 | 11 | cbvrabv | ⊢ { 𝑟 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑟 ) } = { 𝑥 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑥 ) } |
| 13 | 4 12 | eqtri | ⊢ 𝑆 = { 𝑥 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑥 ) } |
| 14 | 9 13 | elrab2 | ⊢ ( 𝑅 ∈ 𝑆 ↔ ( 𝑅 ∈ ℕ0 ∧ 𝐷 ∥ ( 𝑁 − 𝑅 ) ) ) |
| 15 | 7 14 | mpbi | ⊢ ( 𝑅 ∈ ℕ0 ∧ 𝐷 ∥ ( 𝑁 − 𝑅 ) ) |
| 16 | 15 | simpli | ⊢ 𝑅 ∈ ℕ0 |
| 17 | 16 | nn0ge0i | ⊢ 0 ≤ 𝑅 |
| 18 | nnabscl | ⊢ ( ( 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ) → ( abs ‘ 𝐷 ) ∈ ℕ ) | |
| 19 | 2 3 18 | mp2an | ⊢ ( abs ‘ 𝐷 ) ∈ ℕ |
| 20 | 19 | nngt0i | ⊢ 0 < ( abs ‘ 𝐷 ) |
| 21 | 0re | ⊢ 0 ∈ ℝ | |
| 22 | zcn | ⊢ ( 𝐷 ∈ ℤ → 𝐷 ∈ ℂ ) | |
| 23 | 2 22 | ax-mp | ⊢ 𝐷 ∈ ℂ |
| 24 | 23 | abscli | ⊢ ( abs ‘ 𝐷 ) ∈ ℝ |
| 25 | 21 24 | ltnlei | ⊢ ( 0 < ( abs ‘ 𝐷 ) ↔ ¬ ( abs ‘ 𝐷 ) ≤ 0 ) |
| 26 | 20 25 | mpbi | ⊢ ¬ ( abs ‘ 𝐷 ) ≤ 0 |
| 27 | 4 | ssrab3 | ⊢ 𝑆 ⊆ ℕ0 |
| 28 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 29 | 27 28 | sseqtri | ⊢ 𝑆 ⊆ ( ℤ≥ ‘ 0 ) |
| 30 | nn0abscl | ⊢ ( 𝐷 ∈ ℤ → ( abs ‘ 𝐷 ) ∈ ℕ0 ) | |
| 31 | 2 30 | ax-mp | ⊢ ( abs ‘ 𝐷 ) ∈ ℕ0 |
| 32 | nn0sub2 | ⊢ ( ( ( abs ‘ 𝐷 ) ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ ( abs ‘ 𝐷 ) ≤ 𝑅 ) → ( 𝑅 − ( abs ‘ 𝐷 ) ) ∈ ℕ0 ) | |
| 33 | 31 16 32 | mp3an12 | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → ( 𝑅 − ( abs ‘ 𝐷 ) ) ∈ ℕ0 ) |
| 34 | 15 | a1i | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → ( 𝑅 ∈ ℕ0 ∧ 𝐷 ∥ ( 𝑁 − 𝑅 ) ) ) |
| 35 | nn0z | ⊢ ( 𝑅 ∈ ℕ0 → 𝑅 ∈ ℤ ) | |
| 36 | 1z | ⊢ 1 ∈ ℤ | |
| 37 | 1 2 | divalglem0 | ⊢ ( ( 𝑅 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝐷 ∥ ( 𝑁 − 𝑅 ) → 𝐷 ∥ ( 𝑁 − ( 𝑅 − ( 1 · ( abs ‘ 𝐷 ) ) ) ) ) ) |
| 38 | 36 37 | mpan2 | ⊢ ( 𝑅 ∈ ℤ → ( 𝐷 ∥ ( 𝑁 − 𝑅 ) → 𝐷 ∥ ( 𝑁 − ( 𝑅 − ( 1 · ( abs ‘ 𝐷 ) ) ) ) ) ) |
| 39 | 24 | recni | ⊢ ( abs ‘ 𝐷 ) ∈ ℂ |
| 40 | 39 | mullidi | ⊢ ( 1 · ( abs ‘ 𝐷 ) ) = ( abs ‘ 𝐷 ) |
| 41 | 40 | oveq2i | ⊢ ( 𝑅 − ( 1 · ( abs ‘ 𝐷 ) ) ) = ( 𝑅 − ( abs ‘ 𝐷 ) ) |
| 42 | 41 | oveq2i | ⊢ ( 𝑁 − ( 𝑅 − ( 1 · ( abs ‘ 𝐷 ) ) ) ) = ( 𝑁 − ( 𝑅 − ( abs ‘ 𝐷 ) ) ) |
| 43 | 42 | breq2i | ⊢ ( 𝐷 ∥ ( 𝑁 − ( 𝑅 − ( 1 · ( abs ‘ 𝐷 ) ) ) ) ↔ 𝐷 ∥ ( 𝑁 − ( 𝑅 − ( abs ‘ 𝐷 ) ) ) ) |
| 44 | 38 43 | imbitrdi | ⊢ ( 𝑅 ∈ ℤ → ( 𝐷 ∥ ( 𝑁 − 𝑅 ) → 𝐷 ∥ ( 𝑁 − ( 𝑅 − ( abs ‘ 𝐷 ) ) ) ) ) |
| 45 | 35 44 | syl | ⊢ ( 𝑅 ∈ ℕ0 → ( 𝐷 ∥ ( 𝑁 − 𝑅 ) → 𝐷 ∥ ( 𝑁 − ( 𝑅 − ( abs ‘ 𝐷 ) ) ) ) ) |
| 46 | 45 | imp | ⊢ ( ( 𝑅 ∈ ℕ0 ∧ 𝐷 ∥ ( 𝑁 − 𝑅 ) ) → 𝐷 ∥ ( 𝑁 − ( 𝑅 − ( abs ‘ 𝐷 ) ) ) ) |
| 47 | 34 46 | syl | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → 𝐷 ∥ ( 𝑁 − ( 𝑅 − ( abs ‘ 𝐷 ) ) ) ) |
| 48 | oveq2 | ⊢ ( 𝑥 = ( 𝑅 − ( abs ‘ 𝐷 ) ) → ( 𝑁 − 𝑥 ) = ( 𝑁 − ( 𝑅 − ( abs ‘ 𝐷 ) ) ) ) | |
| 49 | 48 | breq2d | ⊢ ( 𝑥 = ( 𝑅 − ( abs ‘ 𝐷 ) ) → ( 𝐷 ∥ ( 𝑁 − 𝑥 ) ↔ 𝐷 ∥ ( 𝑁 − ( 𝑅 − ( abs ‘ 𝐷 ) ) ) ) ) |
| 50 | 49 13 | elrab2 | ⊢ ( ( 𝑅 − ( abs ‘ 𝐷 ) ) ∈ 𝑆 ↔ ( ( 𝑅 − ( abs ‘ 𝐷 ) ) ∈ ℕ0 ∧ 𝐷 ∥ ( 𝑁 − ( 𝑅 − ( abs ‘ 𝐷 ) ) ) ) ) |
| 51 | 33 47 50 | sylanbrc | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → ( 𝑅 − ( abs ‘ 𝐷 ) ) ∈ 𝑆 ) |
| 52 | infssuzle | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 0 ) ∧ ( 𝑅 − ( abs ‘ 𝐷 ) ) ∈ 𝑆 ) → inf ( 𝑆 , ℝ , < ) ≤ ( 𝑅 − ( abs ‘ 𝐷 ) ) ) | |
| 53 | 29 51 52 | sylancr | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → inf ( 𝑆 , ℝ , < ) ≤ ( 𝑅 − ( abs ‘ 𝐷 ) ) ) |
| 54 | 5 53 | eqbrtrid | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → 𝑅 ≤ ( 𝑅 − ( abs ‘ 𝐷 ) ) ) |
| 55 | 34 | simpld | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → 𝑅 ∈ ℕ0 ) |
| 56 | 55 | nn0red | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → 𝑅 ∈ ℝ ) |
| 57 | lesub | ⊢ ( ( 𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ( abs ‘ 𝐷 ) ∈ ℝ ) → ( 𝑅 ≤ ( 𝑅 − ( abs ‘ 𝐷 ) ) ↔ ( abs ‘ 𝐷 ) ≤ ( 𝑅 − 𝑅 ) ) ) | |
| 58 | 24 57 | mp3an3 | ⊢ ( ( 𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( 𝑅 ≤ ( 𝑅 − ( abs ‘ 𝐷 ) ) ↔ ( abs ‘ 𝐷 ) ≤ ( 𝑅 − 𝑅 ) ) ) |
| 59 | 56 56 58 | syl2anc | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → ( 𝑅 ≤ ( 𝑅 − ( abs ‘ 𝐷 ) ) ↔ ( abs ‘ 𝐷 ) ≤ ( 𝑅 − 𝑅 ) ) ) |
| 60 | 56 | recnd | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → 𝑅 ∈ ℂ ) |
| 61 | 60 | subidd | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → ( 𝑅 − 𝑅 ) = 0 ) |
| 62 | 61 | breq2d | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → ( ( abs ‘ 𝐷 ) ≤ ( 𝑅 − 𝑅 ) ↔ ( abs ‘ 𝐷 ) ≤ 0 ) ) |
| 63 | 59 62 | bitrd | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → ( 𝑅 ≤ ( 𝑅 − ( abs ‘ 𝐷 ) ) ↔ ( abs ‘ 𝐷 ) ≤ 0 ) ) |
| 64 | 54 63 | mpbid | ⊢ ( ( abs ‘ 𝐷 ) ≤ 𝑅 → ( abs ‘ 𝐷 ) ≤ 0 ) |
| 65 | 26 64 | mto | ⊢ ¬ ( abs ‘ 𝐷 ) ≤ 𝑅 |
| 66 | 16 | nn0rei | ⊢ 𝑅 ∈ ℝ |
| 67 | 66 24 | ltnlei | ⊢ ( 𝑅 < ( abs ‘ 𝐷 ) ↔ ¬ ( abs ‘ 𝐷 ) ≤ 𝑅 ) |
| 68 | 65 67 | mpbir | ⊢ 𝑅 < ( abs ‘ 𝐷 ) |
| 69 | 17 68 | pm3.2i | ⊢ ( 0 ≤ 𝑅 ∧ 𝑅 < ( abs ‘ 𝐷 ) ) |