This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem0.1 | |- N e. ZZ |
|
| divalglem0.2 | |- D e. ZZ |
||
| divalglem1.3 | |- D =/= 0 |
||
| divalglem2.4 | |- S = { r e. NN0 | D || ( N - r ) } |
||
| Assertion | divalglem4 | |- S = { r e. NN0 | E. q e. ZZ N = ( ( q x. D ) + r ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.1 | |- N e. ZZ |
|
| 2 | divalglem0.2 | |- D e. ZZ |
|
| 3 | divalglem1.3 | |- D =/= 0 |
|
| 4 | divalglem2.4 | |- S = { r e. NN0 | D || ( N - r ) } |
|
| 5 | nn0z | |- ( z e. NN0 -> z e. ZZ ) |
|
| 6 | zsubcl | |- ( ( N e. ZZ /\ z e. ZZ ) -> ( N - z ) e. ZZ ) |
|
| 7 | 1 5 6 | sylancr | |- ( z e. NN0 -> ( N - z ) e. ZZ ) |
| 8 | divides | |- ( ( D e. ZZ /\ ( N - z ) e. ZZ ) -> ( D || ( N - z ) <-> E. q e. ZZ ( q x. D ) = ( N - z ) ) ) |
|
| 9 | 2 7 8 | sylancr | |- ( z e. NN0 -> ( D || ( N - z ) <-> E. q e. ZZ ( q x. D ) = ( N - z ) ) ) |
| 10 | nn0cn | |- ( z e. NN0 -> z e. CC ) |
|
| 11 | zmulcl | |- ( ( q e. ZZ /\ D e. ZZ ) -> ( q x. D ) e. ZZ ) |
|
| 12 | 2 11 | mpan2 | |- ( q e. ZZ -> ( q x. D ) e. ZZ ) |
| 13 | 12 | zcnd | |- ( q e. ZZ -> ( q x. D ) e. CC ) |
| 14 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 15 | 1 14 | ax-mp | |- N e. CC |
| 16 | subadd | |- ( ( N e. CC /\ z e. CC /\ ( q x. D ) e. CC ) -> ( ( N - z ) = ( q x. D ) <-> ( z + ( q x. D ) ) = N ) ) |
|
| 17 | 15 16 | mp3an1 | |- ( ( z e. CC /\ ( q x. D ) e. CC ) -> ( ( N - z ) = ( q x. D ) <-> ( z + ( q x. D ) ) = N ) ) |
| 18 | addcom | |- ( ( z e. CC /\ ( q x. D ) e. CC ) -> ( z + ( q x. D ) ) = ( ( q x. D ) + z ) ) |
|
| 19 | 18 | eqeq1d | |- ( ( z e. CC /\ ( q x. D ) e. CC ) -> ( ( z + ( q x. D ) ) = N <-> ( ( q x. D ) + z ) = N ) ) |
| 20 | 17 19 | bitrd | |- ( ( z e. CC /\ ( q x. D ) e. CC ) -> ( ( N - z ) = ( q x. D ) <-> ( ( q x. D ) + z ) = N ) ) |
| 21 | 10 13 20 | syl2an | |- ( ( z e. NN0 /\ q e. ZZ ) -> ( ( N - z ) = ( q x. D ) <-> ( ( q x. D ) + z ) = N ) ) |
| 22 | eqcom | |- ( ( N - z ) = ( q x. D ) <-> ( q x. D ) = ( N - z ) ) |
|
| 23 | eqcom | |- ( ( ( q x. D ) + z ) = N <-> N = ( ( q x. D ) + z ) ) |
|
| 24 | 21 22 23 | 3bitr3g | |- ( ( z e. NN0 /\ q e. ZZ ) -> ( ( q x. D ) = ( N - z ) <-> N = ( ( q x. D ) + z ) ) ) |
| 25 | 24 | rexbidva | |- ( z e. NN0 -> ( E. q e. ZZ ( q x. D ) = ( N - z ) <-> E. q e. ZZ N = ( ( q x. D ) + z ) ) ) |
| 26 | 9 25 | bitrd | |- ( z e. NN0 -> ( D || ( N - z ) <-> E. q e. ZZ N = ( ( q x. D ) + z ) ) ) |
| 27 | 26 | pm5.32i | |- ( ( z e. NN0 /\ D || ( N - z ) ) <-> ( z e. NN0 /\ E. q e. ZZ N = ( ( q x. D ) + z ) ) ) |
| 28 | oveq2 | |- ( r = z -> ( N - r ) = ( N - z ) ) |
|
| 29 | 28 | breq2d | |- ( r = z -> ( D || ( N - r ) <-> D || ( N - z ) ) ) |
| 30 | 29 4 | elrab2 | |- ( z e. S <-> ( z e. NN0 /\ D || ( N - z ) ) ) |
| 31 | oveq2 | |- ( r = z -> ( ( q x. D ) + r ) = ( ( q x. D ) + z ) ) |
|
| 32 | 31 | eqeq2d | |- ( r = z -> ( N = ( ( q x. D ) + r ) <-> N = ( ( q x. D ) + z ) ) ) |
| 33 | 32 | rexbidv | |- ( r = z -> ( E. q e. ZZ N = ( ( q x. D ) + r ) <-> E. q e. ZZ N = ( ( q x. D ) + z ) ) ) |
| 34 | 33 | elrab | |- ( z e. { r e. NN0 | E. q e. ZZ N = ( ( q x. D ) + r ) } <-> ( z e. NN0 /\ E. q e. ZZ N = ( ( q x. D ) + z ) ) ) |
| 35 | 27 30 34 | 3bitr4i | |- ( z e. S <-> z e. { r e. NN0 | E. q e. ZZ N = ( ( q x. D ) + r ) } ) |
| 36 | 35 | eqriv | |- S = { r e. NN0 | E. q e. ZZ N = ( ( q x. D ) + r ) } |