This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011) (Revised by AV, 2-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem0.1 | ⊢ 𝑁 ∈ ℤ | |
| divalglem0.2 | ⊢ 𝐷 ∈ ℤ | ||
| divalglem1.3 | ⊢ 𝐷 ≠ 0 | ||
| divalglem2.4 | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑟 ) } | ||
| Assertion | divalglem2 | ⊢ inf ( 𝑆 , ℝ , < ) ∈ 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.1 | ⊢ 𝑁 ∈ ℤ | |
| 2 | divalglem0.2 | ⊢ 𝐷 ∈ ℤ | |
| 3 | divalglem1.3 | ⊢ 𝐷 ≠ 0 | |
| 4 | divalglem2.4 | ⊢ 𝑆 = { 𝑟 ∈ ℕ0 ∣ 𝐷 ∥ ( 𝑁 − 𝑟 ) } | |
| 5 | 4 | ssrab3 | ⊢ 𝑆 ⊆ ℕ0 |
| 6 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 7 | 5 6 | sseqtri | ⊢ 𝑆 ⊆ ( ℤ≥ ‘ 0 ) |
| 8 | zmulcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝑁 · 𝐷 ) ∈ ℤ ) | |
| 9 | 1 2 8 | mp2an | ⊢ ( 𝑁 · 𝐷 ) ∈ ℤ |
| 10 | nn0abscl | ⊢ ( ( 𝑁 · 𝐷 ) ∈ ℤ → ( abs ‘ ( 𝑁 · 𝐷 ) ) ∈ ℕ0 ) | |
| 11 | 9 10 | ax-mp | ⊢ ( abs ‘ ( 𝑁 · 𝐷 ) ) ∈ ℕ0 |
| 12 | 11 | nn0zi | ⊢ ( abs ‘ ( 𝑁 · 𝐷 ) ) ∈ ℤ |
| 13 | zaddcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( abs ‘ ( 𝑁 · 𝐷 ) ) ∈ ℤ ) → ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ∈ ℤ ) | |
| 14 | 1 12 13 | mp2an | ⊢ ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ∈ ℤ |
| 15 | 1 2 3 | divalglem1 | ⊢ 0 ≤ ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
| 16 | elnn0z | ⊢ ( ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ∈ ℕ0 ↔ ( ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ∈ ℤ ∧ 0 ≤ ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) ) | |
| 17 | 14 15 16 | mpbir2an | ⊢ ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ∈ ℕ0 |
| 18 | iddvds | ⊢ ( 𝐷 ∈ ℤ → 𝐷 ∥ 𝐷 ) | |
| 19 | dvdsabsb | ⊢ ( ( 𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐷 ∥ 𝐷 ↔ 𝐷 ∥ ( abs ‘ 𝐷 ) ) ) | |
| 20 | 19 | anidms | ⊢ ( 𝐷 ∈ ℤ → ( 𝐷 ∥ 𝐷 ↔ 𝐷 ∥ ( abs ‘ 𝐷 ) ) ) |
| 21 | 18 20 | mpbid | ⊢ ( 𝐷 ∈ ℤ → 𝐷 ∥ ( abs ‘ 𝐷 ) ) |
| 22 | 2 21 | ax-mp | ⊢ 𝐷 ∥ ( abs ‘ 𝐷 ) |
| 23 | nn0abscl | ⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℕ0 ) | |
| 24 | 1 23 | ax-mp | ⊢ ( abs ‘ 𝑁 ) ∈ ℕ0 |
| 25 | 24 | nn0negzi | ⊢ - ( abs ‘ 𝑁 ) ∈ ℤ |
| 26 | nn0abscl | ⊢ ( 𝐷 ∈ ℤ → ( abs ‘ 𝐷 ) ∈ ℕ0 ) | |
| 27 | 2 26 | ax-mp | ⊢ ( abs ‘ 𝐷 ) ∈ ℕ0 |
| 28 | 27 | nn0zi | ⊢ ( abs ‘ 𝐷 ) ∈ ℤ |
| 29 | dvdsmultr2 | ⊢ ( ( 𝐷 ∈ ℤ ∧ - ( abs ‘ 𝑁 ) ∈ ℤ ∧ ( abs ‘ 𝐷 ) ∈ ℤ ) → ( 𝐷 ∥ ( abs ‘ 𝐷 ) → 𝐷 ∥ ( - ( abs ‘ 𝑁 ) · ( abs ‘ 𝐷 ) ) ) ) | |
| 30 | 2 25 28 29 | mp3an | ⊢ ( 𝐷 ∥ ( abs ‘ 𝐷 ) → 𝐷 ∥ ( - ( abs ‘ 𝑁 ) · ( abs ‘ 𝐷 ) ) ) |
| 31 | 22 30 | ax-mp | ⊢ 𝐷 ∥ ( - ( abs ‘ 𝑁 ) · ( abs ‘ 𝐷 ) ) |
| 32 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 33 | 1 32 | ax-mp | ⊢ 𝑁 ∈ ℂ |
| 34 | zcn | ⊢ ( 𝐷 ∈ ℤ → 𝐷 ∈ ℂ ) | |
| 35 | 2 34 | ax-mp | ⊢ 𝐷 ∈ ℂ |
| 36 | 33 35 | absmuli | ⊢ ( abs ‘ ( 𝑁 · 𝐷 ) ) = ( ( abs ‘ 𝑁 ) · ( abs ‘ 𝐷 ) ) |
| 37 | 36 | negeqi | ⊢ - ( abs ‘ ( 𝑁 · 𝐷 ) ) = - ( ( abs ‘ 𝑁 ) · ( abs ‘ 𝐷 ) ) |
| 38 | df-neg | ⊢ - ( abs ‘ ( 𝑁 · 𝐷 ) ) = ( 0 − ( abs ‘ ( 𝑁 · 𝐷 ) ) ) | |
| 39 | 33 | subidi | ⊢ ( 𝑁 − 𝑁 ) = 0 |
| 40 | 39 | oveq1i | ⊢ ( ( 𝑁 − 𝑁 ) − ( abs ‘ ( 𝑁 · 𝐷 ) ) ) = ( 0 − ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
| 41 | 11 | nn0cni | ⊢ ( abs ‘ ( 𝑁 · 𝐷 ) ) ∈ ℂ |
| 42 | subsub4 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ( abs ‘ ( 𝑁 · 𝐷 ) ) ∈ ℂ ) → ( ( 𝑁 − 𝑁 ) − ( abs ‘ ( 𝑁 · 𝐷 ) ) ) = ( 𝑁 − ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) ) | |
| 43 | 33 33 41 42 | mp3an | ⊢ ( ( 𝑁 − 𝑁 ) − ( abs ‘ ( 𝑁 · 𝐷 ) ) ) = ( 𝑁 − ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) |
| 44 | 38 40 43 | 3eqtr2ri | ⊢ ( 𝑁 − ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) = - ( abs ‘ ( 𝑁 · 𝐷 ) ) |
| 45 | 33 | abscli | ⊢ ( abs ‘ 𝑁 ) ∈ ℝ |
| 46 | 45 | recni | ⊢ ( abs ‘ 𝑁 ) ∈ ℂ |
| 47 | 35 | abscli | ⊢ ( abs ‘ 𝐷 ) ∈ ℝ |
| 48 | 47 | recni | ⊢ ( abs ‘ 𝐷 ) ∈ ℂ |
| 49 | 46 48 | mulneg1i | ⊢ ( - ( abs ‘ 𝑁 ) · ( abs ‘ 𝐷 ) ) = - ( ( abs ‘ 𝑁 ) · ( abs ‘ 𝐷 ) ) |
| 50 | 37 44 49 | 3eqtr4i | ⊢ ( 𝑁 − ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) = ( - ( abs ‘ 𝑁 ) · ( abs ‘ 𝐷 ) ) |
| 51 | 31 50 | breqtrri | ⊢ 𝐷 ∥ ( 𝑁 − ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) |
| 52 | oveq2 | ⊢ ( 𝑟 = ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) → ( 𝑁 − 𝑟 ) = ( 𝑁 − ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) ) | |
| 53 | 52 | breq2d | ⊢ ( 𝑟 = ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) → ( 𝐷 ∥ ( 𝑁 − 𝑟 ) ↔ 𝐷 ∥ ( 𝑁 − ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) ) ) |
| 54 | 53 4 | elrab2 | ⊢ ( ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ∈ 𝑆 ↔ ( ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ∈ ℕ0 ∧ 𝐷 ∥ ( 𝑁 − ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) ) ) |
| 55 | 17 51 54 | mpbir2an | ⊢ ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ∈ 𝑆 |
| 56 | 55 | ne0ii | ⊢ 𝑆 ≠ ∅ |
| 57 | infssuzcl | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 0 ) ∧ 𝑆 ≠ ∅ ) → inf ( 𝑆 , ℝ , < ) ∈ 𝑆 ) | |
| 58 | 7 56 57 | mp2an | ⊢ inf ( 𝑆 , ℝ , < ) ∈ 𝑆 |