This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011) (Revised by AV, 2-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem0.1 | |- N e. ZZ |
|
| divalglem0.2 | |- D e. ZZ |
||
| divalglem1.3 | |- D =/= 0 |
||
| divalglem2.4 | |- S = { r e. NN0 | D || ( N - r ) } |
||
| Assertion | divalglem2 | |- inf ( S , RR , < ) e. S |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.1 | |- N e. ZZ |
|
| 2 | divalglem0.2 | |- D e. ZZ |
|
| 3 | divalglem1.3 | |- D =/= 0 |
|
| 4 | divalglem2.4 | |- S = { r e. NN0 | D || ( N - r ) } |
|
| 5 | 4 | ssrab3 | |- S C_ NN0 |
| 6 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 7 | 5 6 | sseqtri | |- S C_ ( ZZ>= ` 0 ) |
| 8 | zmulcl | |- ( ( N e. ZZ /\ D e. ZZ ) -> ( N x. D ) e. ZZ ) |
|
| 9 | 1 2 8 | mp2an | |- ( N x. D ) e. ZZ |
| 10 | nn0abscl | |- ( ( N x. D ) e. ZZ -> ( abs ` ( N x. D ) ) e. NN0 ) |
|
| 11 | 9 10 | ax-mp | |- ( abs ` ( N x. D ) ) e. NN0 |
| 12 | 11 | nn0zi | |- ( abs ` ( N x. D ) ) e. ZZ |
| 13 | zaddcl | |- ( ( N e. ZZ /\ ( abs ` ( N x. D ) ) e. ZZ ) -> ( N + ( abs ` ( N x. D ) ) ) e. ZZ ) |
|
| 14 | 1 12 13 | mp2an | |- ( N + ( abs ` ( N x. D ) ) ) e. ZZ |
| 15 | 1 2 3 | divalglem1 | |- 0 <_ ( N + ( abs ` ( N x. D ) ) ) |
| 16 | elnn0z | |- ( ( N + ( abs ` ( N x. D ) ) ) e. NN0 <-> ( ( N + ( abs ` ( N x. D ) ) ) e. ZZ /\ 0 <_ ( N + ( abs ` ( N x. D ) ) ) ) ) |
|
| 17 | 14 15 16 | mpbir2an | |- ( N + ( abs ` ( N x. D ) ) ) e. NN0 |
| 18 | iddvds | |- ( D e. ZZ -> D || D ) |
|
| 19 | dvdsabsb | |- ( ( D e. ZZ /\ D e. ZZ ) -> ( D || D <-> D || ( abs ` D ) ) ) |
|
| 20 | 19 | anidms | |- ( D e. ZZ -> ( D || D <-> D || ( abs ` D ) ) ) |
| 21 | 18 20 | mpbid | |- ( D e. ZZ -> D || ( abs ` D ) ) |
| 22 | 2 21 | ax-mp | |- D || ( abs ` D ) |
| 23 | nn0abscl | |- ( N e. ZZ -> ( abs ` N ) e. NN0 ) |
|
| 24 | 1 23 | ax-mp | |- ( abs ` N ) e. NN0 |
| 25 | 24 | nn0negzi | |- -u ( abs ` N ) e. ZZ |
| 26 | nn0abscl | |- ( D e. ZZ -> ( abs ` D ) e. NN0 ) |
|
| 27 | 2 26 | ax-mp | |- ( abs ` D ) e. NN0 |
| 28 | 27 | nn0zi | |- ( abs ` D ) e. ZZ |
| 29 | dvdsmultr2 | |- ( ( D e. ZZ /\ -u ( abs ` N ) e. ZZ /\ ( abs ` D ) e. ZZ ) -> ( D || ( abs ` D ) -> D || ( -u ( abs ` N ) x. ( abs ` D ) ) ) ) |
|
| 30 | 2 25 28 29 | mp3an | |- ( D || ( abs ` D ) -> D || ( -u ( abs ` N ) x. ( abs ` D ) ) ) |
| 31 | 22 30 | ax-mp | |- D || ( -u ( abs ` N ) x. ( abs ` D ) ) |
| 32 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 33 | 1 32 | ax-mp | |- N e. CC |
| 34 | zcn | |- ( D e. ZZ -> D e. CC ) |
|
| 35 | 2 34 | ax-mp | |- D e. CC |
| 36 | 33 35 | absmuli | |- ( abs ` ( N x. D ) ) = ( ( abs ` N ) x. ( abs ` D ) ) |
| 37 | 36 | negeqi | |- -u ( abs ` ( N x. D ) ) = -u ( ( abs ` N ) x. ( abs ` D ) ) |
| 38 | df-neg | |- -u ( abs ` ( N x. D ) ) = ( 0 - ( abs ` ( N x. D ) ) ) |
|
| 39 | 33 | subidi | |- ( N - N ) = 0 |
| 40 | 39 | oveq1i | |- ( ( N - N ) - ( abs ` ( N x. D ) ) ) = ( 0 - ( abs ` ( N x. D ) ) ) |
| 41 | 11 | nn0cni | |- ( abs ` ( N x. D ) ) e. CC |
| 42 | subsub4 | |- ( ( N e. CC /\ N e. CC /\ ( abs ` ( N x. D ) ) e. CC ) -> ( ( N - N ) - ( abs ` ( N x. D ) ) ) = ( N - ( N + ( abs ` ( N x. D ) ) ) ) ) |
|
| 43 | 33 33 41 42 | mp3an | |- ( ( N - N ) - ( abs ` ( N x. D ) ) ) = ( N - ( N + ( abs ` ( N x. D ) ) ) ) |
| 44 | 38 40 43 | 3eqtr2ri | |- ( N - ( N + ( abs ` ( N x. D ) ) ) ) = -u ( abs ` ( N x. D ) ) |
| 45 | 33 | abscli | |- ( abs ` N ) e. RR |
| 46 | 45 | recni | |- ( abs ` N ) e. CC |
| 47 | 35 | abscli | |- ( abs ` D ) e. RR |
| 48 | 47 | recni | |- ( abs ` D ) e. CC |
| 49 | 46 48 | mulneg1i | |- ( -u ( abs ` N ) x. ( abs ` D ) ) = -u ( ( abs ` N ) x. ( abs ` D ) ) |
| 50 | 37 44 49 | 3eqtr4i | |- ( N - ( N + ( abs ` ( N x. D ) ) ) ) = ( -u ( abs ` N ) x. ( abs ` D ) ) |
| 51 | 31 50 | breqtrri | |- D || ( N - ( N + ( abs ` ( N x. D ) ) ) ) |
| 52 | oveq2 | |- ( r = ( N + ( abs ` ( N x. D ) ) ) -> ( N - r ) = ( N - ( N + ( abs ` ( N x. D ) ) ) ) ) |
|
| 53 | 52 | breq2d | |- ( r = ( N + ( abs ` ( N x. D ) ) ) -> ( D || ( N - r ) <-> D || ( N - ( N + ( abs ` ( N x. D ) ) ) ) ) ) |
| 54 | 53 4 | elrab2 | |- ( ( N + ( abs ` ( N x. D ) ) ) e. S <-> ( ( N + ( abs ` ( N x. D ) ) ) e. NN0 /\ D || ( N - ( N + ( abs ` ( N x. D ) ) ) ) ) ) |
| 55 | 17 51 54 | mpbir2an | |- ( N + ( abs ` ( N x. D ) ) ) e. S |
| 56 | 55 | ne0ii | |- S =/= (/) |
| 57 | infssuzcl | |- ( ( S C_ ( ZZ>= ` 0 ) /\ S =/= (/) ) -> inf ( S , RR , < ) e. S ) |
|
| 58 | 7 56 57 | mp2an | |- inf ( S , RR , < ) e. S |