This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value distributes over multiplication. Proposition 10-3.7(f) of Gleason p. 133. (Contributed by NM, 1-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | absvalsqi.1 | ⊢ 𝐴 ∈ ℂ | |
| abssub.2 | ⊢ 𝐵 ∈ ℂ | ||
| Assertion | absmuli | ⊢ ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absvalsqi.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | abssub.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | absmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) |