This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem0.1 | ⊢ 𝑁 ∈ ℤ | |
| divalglem0.2 | ⊢ 𝐷 ∈ ℤ | ||
| divalglem1.3 | ⊢ 𝐷 ≠ 0 | ||
| Assertion | divalglem1 | ⊢ 0 ≤ ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.1 | ⊢ 𝑁 ∈ ℤ | |
| 2 | divalglem0.2 | ⊢ 𝐷 ∈ ℤ | |
| 3 | divalglem1.3 | ⊢ 𝐷 ≠ 0 | |
| 4 | 1 | zrei | ⊢ 𝑁 ∈ ℝ |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | 4 5 | letrii | ⊢ ( 𝑁 ≤ 0 ∨ 0 ≤ 𝑁 ) |
| 7 | nnabscl | ⊢ ( ( 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ) → ( abs ‘ 𝐷 ) ∈ ℕ ) | |
| 8 | 2 3 7 | mp2an | ⊢ ( abs ‘ 𝐷 ) ∈ ℕ |
| 9 | nnge1 | ⊢ ( ( abs ‘ 𝐷 ) ∈ ℕ → 1 ≤ ( abs ‘ 𝐷 ) ) | |
| 10 | 8 9 | ax-mp | ⊢ 1 ≤ ( abs ‘ 𝐷 ) |
| 11 | le0neg1 | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 ≤ 0 ↔ 0 ≤ - 𝑁 ) ) | |
| 12 | 4 11 | ax-mp | ⊢ ( 𝑁 ≤ 0 ↔ 0 ≤ - 𝑁 ) |
| 13 | 4 | renegcli | ⊢ - 𝑁 ∈ ℝ |
| 14 | 2 | zrei | ⊢ 𝐷 ∈ ℝ |
| 15 | 14 | recni | ⊢ 𝐷 ∈ ℂ |
| 16 | 15 | abscli | ⊢ ( abs ‘ 𝐷 ) ∈ ℝ |
| 17 | lemulge11 | ⊢ ( ( ( - 𝑁 ∈ ℝ ∧ ( abs ‘ 𝐷 ) ∈ ℝ ) ∧ ( 0 ≤ - 𝑁 ∧ 1 ≤ ( abs ‘ 𝐷 ) ) ) → - 𝑁 ≤ ( - 𝑁 · ( abs ‘ 𝐷 ) ) ) | |
| 18 | 13 16 17 | mpanl12 | ⊢ ( ( 0 ≤ - 𝑁 ∧ 1 ≤ ( abs ‘ 𝐷 ) ) → - 𝑁 ≤ ( - 𝑁 · ( abs ‘ 𝐷 ) ) ) |
| 19 | 12 18 | sylanb | ⊢ ( ( 𝑁 ≤ 0 ∧ 1 ≤ ( abs ‘ 𝐷 ) ) → - 𝑁 ≤ ( - 𝑁 · ( abs ‘ 𝐷 ) ) ) |
| 20 | 10 19 | mpan2 | ⊢ ( 𝑁 ≤ 0 → - 𝑁 ≤ ( - 𝑁 · ( abs ‘ 𝐷 ) ) ) |
| 21 | 4 | recni | ⊢ 𝑁 ∈ ℂ |
| 22 | 21 15 | absmuli | ⊢ ( abs ‘ ( 𝑁 · 𝐷 ) ) = ( ( abs ‘ 𝑁 ) · ( abs ‘ 𝐷 ) ) |
| 23 | 4 | absnidi | ⊢ ( 𝑁 ≤ 0 → ( abs ‘ 𝑁 ) = - 𝑁 ) |
| 24 | 23 | oveq1d | ⊢ ( 𝑁 ≤ 0 → ( ( abs ‘ 𝑁 ) · ( abs ‘ 𝐷 ) ) = ( - 𝑁 · ( abs ‘ 𝐷 ) ) ) |
| 25 | 22 24 | eqtrid | ⊢ ( 𝑁 ≤ 0 → ( abs ‘ ( 𝑁 · 𝐷 ) ) = ( - 𝑁 · ( abs ‘ 𝐷 ) ) ) |
| 26 | 20 25 | breqtrrd | ⊢ ( 𝑁 ≤ 0 → - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
| 27 | le0neg2 | ⊢ ( 𝑁 ∈ ℝ → ( 0 ≤ 𝑁 ↔ - 𝑁 ≤ 0 ) ) | |
| 28 | 4 27 | ax-mp | ⊢ ( 0 ≤ 𝑁 ↔ - 𝑁 ≤ 0 ) |
| 29 | 4 14 | remulcli | ⊢ ( 𝑁 · 𝐷 ) ∈ ℝ |
| 30 | 29 | recni | ⊢ ( 𝑁 · 𝐷 ) ∈ ℂ |
| 31 | 30 | absge0i | ⊢ 0 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) |
| 32 | 30 | abscli | ⊢ ( abs ‘ ( 𝑁 · 𝐷 ) ) ∈ ℝ |
| 33 | 13 5 32 | letri | ⊢ ( ( - 𝑁 ≤ 0 ∧ 0 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) → - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
| 34 | 31 33 | mpan2 | ⊢ ( - 𝑁 ≤ 0 → - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
| 35 | 28 34 | sylbi | ⊢ ( 0 ≤ 𝑁 → - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
| 36 | 26 35 | jaoi | ⊢ ( ( 𝑁 ≤ 0 ∨ 0 ≤ 𝑁 ) → - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
| 37 | 6 36 | ax-mp | ⊢ - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) |
| 38 | df-neg | ⊢ - 𝑁 = ( 0 − 𝑁 ) | |
| 39 | 38 | breq1i | ⊢ ( - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ↔ ( 0 − 𝑁 ) ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
| 40 | 5 4 32 | lesubadd2i | ⊢ ( ( 0 − 𝑁 ) ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ↔ 0 ≤ ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) |
| 41 | 39 40 | bitri | ⊢ ( - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ↔ 0 ≤ ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) |
| 42 | 37 41 | mpbi | ⊢ 0 ≤ ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |