This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two disjoint collections. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | disjxun.1 | ⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) | |
| Assertion | disjxun | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( Disj 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ↔ ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjxun.1 | ⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) | |
| 2 | disjel | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ 𝐵 ) | |
| 3 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 4 | 3 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑦 ∈ 𝐵 ) ) |
| 5 | 2 4 | syl5ibcom | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 = 𝑦 → ¬ 𝑦 ∈ 𝐵 ) ) |
| 6 | 5 | con2d | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ¬ 𝑥 = 𝑦 ) ) |
| 7 | 6 | impr | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ¬ 𝑥 = 𝑦 ) |
| 8 | biorf | ⊢ ( ¬ 𝑥 = 𝑦 → ( ( 𝐶 ∩ 𝐷 ) = ∅ ↔ ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐶 ∩ 𝐷 ) = ∅ ↔ ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 10 | 9 | bicomd | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 11 | 10 | 2ralbidva | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 12 | 11 | anbi2d | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 13 | ralunb | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) | |
| 14 | 13 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 15 | nfv | ⊢ Ⅎ 𝑧 ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) | |
| 16 | nfcv | ⊢ Ⅎ 𝑥 ( 𝐴 ∪ 𝐵 ) | |
| 17 | nfv | ⊢ Ⅎ 𝑥 𝑧 = 𝑤 | |
| 18 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐶 | |
| 19 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 | |
| 20 | 18 19 | nfin | ⊢ Ⅎ 𝑥 ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) |
| 21 | 20 | nfeq1 | ⊢ Ⅎ 𝑥 ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ |
| 22 | 17 21 | nfor | ⊢ Ⅎ 𝑥 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) |
| 23 | 16 22 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) |
| 24 | equequ2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) | |
| 25 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 26 | nfcv | ⊢ Ⅎ 𝑥 𝐷 | |
| 27 | 25 26 1 | csbhypf | ⊢ ( 𝑤 = 𝑦 → ⦋ 𝑤 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
| 28 | 27 | ineq2d | ⊢ ( 𝑤 = 𝑦 → ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ( 𝐶 ∩ 𝐷 ) ) |
| 29 | 28 | eqeq1d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 30 | 24 29 | orbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 = 𝑤 ∨ ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 31 | 30 | cbvralvw | ⊢ ( ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑤 ∨ ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 32 | equequ1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) | |
| 33 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐶 = ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) | |
| 34 | 33 | ineq1d | ⊢ ( 𝑥 = 𝑧 → ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) ) |
| 35 | 34 | eqeq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 36 | 32 35 | orbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 = 𝑤 ∨ ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 37 | 36 | ralbidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑤 ∨ ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 38 | 31 37 | bitr3id | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 39 | 15 23 38 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 40 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) | |
| 41 | 14 39 40 | 3bitr3i | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 42 | 1 | disjor | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 43 | 42 | anbi1i | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 44 | 12 41 43 | 3bitr4g | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 45 | nfv | ⊢ Ⅎ 𝑤 ( 𝑧 = 𝑥 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ) | |
| 46 | equequ2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑤 ) ) | |
| 47 | csbeq1a | ⊢ ( 𝑥 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) | |
| 48 | 47 | ineq2d | ⊢ ( 𝑥 = 𝑤 → ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) ) |
| 49 | 48 | eqeq1d | ⊢ ( 𝑥 = 𝑤 → ( ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ↔ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 50 | 46 49 | orbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑧 = 𝑥 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ) ↔ ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 51 | 45 22 50 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑥 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 52 | equequ1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑥 ↔ 𝑦 = 𝑥 ) ) | |
| 53 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 54 | 52 53 | bitrdi | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑥 ↔ 𝑥 = 𝑦 ) ) |
| 55 | 25 26 1 | csbhypf | ⊢ ( 𝑧 = 𝑦 → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
| 56 | 55 | ineq1d | ⊢ ( 𝑧 = 𝑦 → ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ( 𝐷 ∩ 𝐶 ) ) |
| 57 | incom | ⊢ ( 𝐷 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐷 ) | |
| 58 | 56 57 | eqtrdi | ⊢ ( 𝑧 = 𝑦 → ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐷 ) ) |
| 59 | 58 | eqeq1d | ⊢ ( 𝑧 = 𝑦 → ( ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ↔ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 60 | 54 59 | orbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 = 𝑥 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 61 | 60 | ralbidv | ⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑥 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 62 | 51 61 | bitr3id | ⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 63 | 62 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 64 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) | |
| 65 | 63 64 | bitri | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 66 | 65 11 | bitrid | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 67 | 66 | anbi1d | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) ) |
| 68 | ralunb | ⊢ ( ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) | |
| 69 | 68 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 70 | r19.26 | ⊢ ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ↔ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) | |
| 71 | 69 70 | bitri | ⊢ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 72 | disjors | ⊢ ( Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) | |
| 73 | 72 | anbi2ci | ⊢ ( ( Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 74 | 67 71 73 | 3bitr4g | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 75 | 44 74 | anbi12d | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ( Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) ) |
| 76 | disjors | ⊢ ( Disj 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ↔ ∀ 𝑧 ∈ ( 𝐴 ∪ 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) | |
| 77 | ralunb | ⊢ ( ∀ 𝑧 ∈ ( 𝐴 ∪ 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) | |
| 78 | 76 77 | bitri | ⊢ ( Disj 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ↔ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 79 | df-3an | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) | |
| 80 | anandir | ⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ( Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) | |
| 81 | 79 80 | bitri | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ( Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 82 | 75 78 81 | 3bitr4g | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( Disj 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ↔ ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |