This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand a disjoint collection with any number of empty sets. (Contributed by Mario Carneiro, 15-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjss3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ ) → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ) | |
| 2 | simprr | ⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) | |
| 3 | n0i | ⊢ ( 𝑦 ∈ 𝐶 → ¬ 𝐶 = ∅ ) | |
| 4 | 2 3 | syl | ⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → ¬ 𝐶 = ∅ ) |
| 5 | simpl | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝑥 ∈ 𝐵 ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐵 ) |
| 7 | eldif | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 8 | simpl | ⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ) | |
| 9 | 7 8 | biimtrrid | ⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝐶 = ∅ ) ) |
| 10 | 6 9 | mpand | ⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → ( ¬ 𝑥 ∈ 𝐴 → 𝐶 = ∅ ) ) |
| 11 | 4 10 | mt3d | ⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐴 ) |
| 12 | 11 2 | jca | ⊢ ( ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) |
| 13 | 12 | ex | ⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 14 | 13 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) → 𝐶 = ∅ ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 15 | 1 14 | sylbi | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ → ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 16 | moim | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 18 | 17 | alimdv | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ → ( ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) → ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 19 | dfdisj2 | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) | |
| 20 | dfdisj2 | ⊢ ( Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) | |
| 21 | 18 19 20 | 3imtr4g | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ ) → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
| 23 | disjss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ ) → ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) |
| 25 | 22 24 | impbid | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝐶 = ∅ ) → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |