This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If x is not free in ph and ps , then it is not free in ( ph \/ ps ) . (Contributed by NM, 5-Aug-1993) (Revised by Mario Carneiro, 11-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| nf.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| Assertion | nfor | ⊢ Ⅎ 𝑥 ( 𝜑 ∨ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | nf.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | df-or | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 → 𝜓 ) ) | |
| 4 | 1 | nfn | ⊢ Ⅎ 𝑥 ¬ 𝜑 |
| 5 | 4 2 | nfim | ⊢ Ⅎ 𝑥 ( ¬ 𝜑 → 𝜓 ) |
| 6 | 3 5 | nfxfr | ⊢ Ⅎ 𝑥 ( 𝜑 ∨ 𝜓 ) |