This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 . (Contributed by NM, 3-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-we | ⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ⊢ 𝑅 | |
| 1 | cA | ⊢ 𝐴 | |
| 2 | 1 0 | wwe | ⊢ 𝑅 We 𝐴 |
| 3 | 1 0 | wfr | ⊢ 𝑅 Fr 𝐴 |
| 4 | 1 0 | wor | ⊢ 𝑅 Or 𝐴 |
| 5 | 3 4 | wa | ⊢ ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) |
| 6 | 2 5 | wb | ⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) |