This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotent law for restricted quantifier. Weak version of ralidm , which does not require ax-10 , ax-12 , but requires ax-8 . (Contributed by GG, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralidmw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | ralidmw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralidmw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 3 | 2 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 5 | pm2.21 | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 6 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 7 | 6 1 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → 𝜓 ) ) ) |
| 8 | 7 | spw | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 9 | 5 8 | ja | ⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 10 | 9 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 11 | 7 | hba1w | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ∀ 𝑥 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 12 | ax-1 | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) | |
| 13 | 11 12 | alrimih | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 14 | 10 13 | impbii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 15 | 4 14 | bitri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 16 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 17 | 15 16 2 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |