This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of TakeutiZaring p. 30. (Contributed by NM, 2-Jan-1994) (Revised by Mario Carneiro, 22-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frirr | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ¬ 𝐵 𝑅 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝑅 Fr 𝐴 ) | |
| 2 | snssi | ⊢ ( 𝐵 ∈ 𝐴 → { 𝐵 } ⊆ 𝐴 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴 ) → { 𝐵 } ⊆ 𝐴 ) |
| 4 | snnzg | ⊢ ( 𝐵 ∈ 𝐴 → { 𝐵 } ≠ ∅ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴 ) → { 𝐵 } ≠ ∅ ) |
| 6 | snex | ⊢ { 𝐵 } ∈ V | |
| 7 | 6 | frc | ⊢ ( ( 𝑅 Fr 𝐴 ∧ { 𝐵 } ⊆ 𝐴 ∧ { 𝐵 } ≠ ∅ ) → ∃ 𝑦 ∈ { 𝐵 } { 𝑥 ∈ { 𝐵 } ∣ 𝑥 𝑅 𝑦 } = ∅ ) |
| 8 | 1 3 5 7 | syl3anc | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑦 ∈ { 𝐵 } { 𝑥 ∈ { 𝐵 } ∣ 𝑥 𝑅 𝑦 } = ∅ ) |
| 9 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝑅 𝑦 ↔ 𝑧 𝑅 𝑦 ) ) | |
| 10 | 9 | rabeq0w | ⊢ ( { 𝑥 ∈ { 𝐵 } ∣ 𝑥 𝑅 𝑦 } = ∅ ↔ ∀ 𝑧 ∈ { 𝐵 } ¬ 𝑧 𝑅 𝑦 ) |
| 11 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 𝐵 ) ) | |
| 12 | 11 | notbid | ⊢ ( 𝑦 = 𝐵 → ( ¬ 𝑧 𝑅 𝑦 ↔ ¬ 𝑧 𝑅 𝐵 ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑧 ∈ { 𝐵 } ¬ 𝑧 𝑅 𝑦 ↔ ∀ 𝑧 ∈ { 𝐵 } ¬ 𝑧 𝑅 𝐵 ) ) |
| 14 | 10 13 | bitrid | ⊢ ( 𝑦 = 𝐵 → ( { 𝑥 ∈ { 𝐵 } ∣ 𝑥 𝑅 𝑦 } = ∅ ↔ ∀ 𝑧 ∈ { 𝐵 } ¬ 𝑧 𝑅 𝐵 ) ) |
| 15 | 14 | rexsng | ⊢ ( 𝐵 ∈ 𝐴 → ( ∃ 𝑦 ∈ { 𝐵 } { 𝑥 ∈ { 𝐵 } ∣ 𝑥 𝑅 𝑦 } = ∅ ↔ ∀ 𝑧 ∈ { 𝐵 } ¬ 𝑧 𝑅 𝐵 ) ) |
| 16 | breq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 𝑅 𝐵 ↔ 𝐵 𝑅 𝐵 ) ) | |
| 17 | 16 | notbid | ⊢ ( 𝑧 = 𝐵 → ( ¬ 𝑧 𝑅 𝐵 ↔ ¬ 𝐵 𝑅 𝐵 ) ) |
| 18 | 17 | ralsng | ⊢ ( 𝐵 ∈ 𝐴 → ( ∀ 𝑧 ∈ { 𝐵 } ¬ 𝑧 𝑅 𝐵 ↔ ¬ 𝐵 𝑅 𝐵 ) ) |
| 19 | 15 18 | bitrd | ⊢ ( 𝐵 ∈ 𝐴 → ( ∃ 𝑦 ∈ { 𝐵 } { 𝑥 ∈ { 𝐵 } ∣ 𝑥 𝑅 𝑦 } = ∅ ↔ ¬ 𝐵 𝑅 𝐵 ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ { 𝐵 } { 𝑥 ∈ { 𝐵 } ∣ 𝑥 𝑅 𝑦 } = ∅ ↔ ¬ 𝐵 𝑅 𝐵 ) ) |
| 21 | 8 20 | mpbid | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ¬ 𝐵 𝑅 𝐵 ) |