This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-founded relation has no 2-cycle loops. Special case of Proposition 6.23 of TakeutiZaring p. 30. (Contributed by NM, 30-May-1994) (Revised by Mario Carneiro, 22-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fr2nr | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex | ⊢ { 𝐵 , 𝐶 } ∈ V | |
| 2 | 1 | a1i | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → { 𝐵 , 𝐶 } ∈ V ) |
| 3 | simpl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → 𝑅 Fr 𝐴 ) | |
| 4 | prssi | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → { 𝐵 , 𝐶 } ⊆ 𝐴 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → { 𝐵 , 𝐶 } ⊆ 𝐴 ) |
| 6 | prnzg | ⊢ ( 𝐵 ∈ 𝐴 → { 𝐵 , 𝐶 } ≠ ∅ ) | |
| 7 | 6 | ad2antrl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → { 𝐵 , 𝐶 } ≠ ∅ ) |
| 8 | fri | ⊢ ( ( ( { 𝐵 , 𝐶 } ∈ V ∧ 𝑅 Fr 𝐴 ) ∧ ( { 𝐵 , 𝐶 } ⊆ 𝐴 ∧ { 𝐵 , 𝐶 } ≠ ∅ ) ) → ∃ 𝑦 ∈ { 𝐵 , 𝐶 } ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝑦 ) | |
| 9 | 2 3 5 7 8 | syl22anc | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ∃ 𝑦 ∈ { 𝐵 , 𝐶 } ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝑦 ) |
| 10 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝐵 ) ) | |
| 11 | 10 | notbid | ⊢ ( 𝑦 = 𝐵 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑥 𝑅 𝐵 ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐵 ) ) |
| 13 | breq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝐶 ) ) | |
| 14 | 13 | notbid | ⊢ ( 𝑦 = 𝐶 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑥 𝑅 𝐶 ) ) |
| 15 | 14 | ralbidv | ⊢ ( 𝑦 = 𝐶 → ( ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐶 ) ) |
| 16 | 12 15 | rexprg | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ { 𝐵 , 𝐶 } ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝑦 ↔ ( ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐵 ∨ ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐶 ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ∃ 𝑦 ∈ { 𝐵 , 𝐶 } ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝑦 ↔ ( ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐵 ∨ ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐶 ) ) ) |
| 18 | 9 17 | mpbid | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐵 ∨ ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐶 ) ) |
| 19 | prid2g | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐵 , 𝐶 } ) | |
| 20 | 19 | ad2antll | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
| 21 | breq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 𝑅 𝐵 ↔ 𝐶 𝑅 𝐵 ) ) | |
| 22 | 21 | notbid | ⊢ ( 𝑥 = 𝐶 → ( ¬ 𝑥 𝑅 𝐵 ↔ ¬ 𝐶 𝑅 𝐵 ) ) |
| 23 | 22 | rspcv | ⊢ ( 𝐶 ∈ { 𝐵 , 𝐶 } → ( ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐵 → ¬ 𝐶 𝑅 𝐵 ) ) |
| 24 | 20 23 | syl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐵 → ¬ 𝐶 𝑅 𝐵 ) ) |
| 25 | prid1g | ⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ∈ { 𝐵 , 𝐶 } ) | |
| 26 | 25 | ad2antrl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 27 | breq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝐶 ↔ 𝐵 𝑅 𝐶 ) ) | |
| 28 | 27 | notbid | ⊢ ( 𝑥 = 𝐵 → ( ¬ 𝑥 𝑅 𝐶 ↔ ¬ 𝐵 𝑅 𝐶 ) ) |
| 29 | 28 | rspcv | ⊢ ( 𝐵 ∈ { 𝐵 , 𝐶 } → ( ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐶 → ¬ 𝐵 𝑅 𝐶 ) ) |
| 30 | 26 29 | syl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐶 → ¬ 𝐵 𝑅 𝐶 ) ) |
| 31 | 24 30 | orim12d | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ( ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐵 ∨ ∀ 𝑥 ∈ { 𝐵 , 𝐶 } ¬ 𝑥 𝑅 𝐶 ) → ( ¬ 𝐶 𝑅 𝐵 ∨ ¬ 𝐵 𝑅 𝐶 ) ) ) |
| 32 | 18 31 | mpd | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ¬ 𝐶 𝑅 𝐵 ∨ ¬ 𝐵 𝑅 𝐶 ) ) |
| 33 | 32 | orcomd | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ¬ 𝐵 𝑅 𝐶 ∨ ¬ 𝐶 𝑅 𝐵 ) ) |
| 34 | ianor | ⊢ ( ¬ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐵 ) ↔ ( ¬ 𝐵 𝑅 𝐶 ∨ ¬ 𝐶 𝑅 𝐵 ) ) | |
| 35 | 33 34 | sylibr | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐵 ) ) |