This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of TakeutiZaring p. 30. (Contributed by NM, 10-Apr-1994) (Revised by Mario Carneiro, 22-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fr3nr | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ∧ 𝐷 𝑅 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpex | ⊢ { 𝐵 , 𝐶 , 𝐷 } ∈ V | |
| 2 | 1 | a1i | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → { 𝐵 , 𝐶 , 𝐷 } ∈ V ) |
| 3 | simpl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝑅 Fr 𝐴 ) | |
| 4 | df-tp | ⊢ { 𝐵 , 𝐶 , 𝐷 } = ( { 𝐵 , 𝐶 } ∪ { 𝐷 } ) | |
| 5 | simpr1 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝐵 ∈ 𝐴 ) | |
| 6 | simpr2 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝐶 ∈ 𝐴 ) | |
| 7 | 5 6 | prssd | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → { 𝐵 , 𝐶 } ⊆ 𝐴 ) |
| 8 | simpr3 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝐷 ∈ 𝐴 ) | |
| 9 | 8 | snssd | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → { 𝐷 } ⊆ 𝐴 ) |
| 10 | 7 9 | unssd | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( { 𝐵 , 𝐶 } ∪ { 𝐷 } ) ⊆ 𝐴 ) |
| 11 | 4 10 | eqsstrid | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → { 𝐵 , 𝐶 , 𝐷 } ⊆ 𝐴 ) |
| 12 | 5 | tpnzd | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → { 𝐵 , 𝐶 , 𝐷 } ≠ ∅ ) |
| 13 | fri | ⊢ ( ( ( { 𝐵 , 𝐶 , 𝐷 } ∈ V ∧ 𝑅 Fr 𝐴 ) ∧ ( { 𝐵 , 𝐶 , 𝐷 } ⊆ 𝐴 ∧ { 𝐵 , 𝐶 , 𝐷 } ≠ ∅ ) ) → ∃ 𝑥 ∈ { 𝐵 , 𝐶 , 𝐷 } ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝑥 ) | |
| 14 | 2 3 11 12 13 | syl22anc | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ { 𝐵 , 𝐶 , 𝐷 } ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝑥 ) |
| 15 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝐵 ) ) | |
| 16 | 15 | notbid | ⊢ ( 𝑥 = 𝐵 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝐵 ) ) |
| 17 | 16 | ralbidv | ⊢ ( 𝑥 = 𝐵 → ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐵 ) ) |
| 18 | breq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝐶 ) ) | |
| 19 | 18 | notbid | ⊢ ( 𝑥 = 𝐶 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝐶 ) ) |
| 20 | 19 | ralbidv | ⊢ ( 𝑥 = 𝐶 → ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐶 ) ) |
| 21 | breq2 | ⊢ ( 𝑥 = 𝐷 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝐷 ) ) | |
| 22 | 21 | notbid | ⊢ ( 𝑥 = 𝐷 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝐷 ) ) |
| 23 | 22 | ralbidv | ⊢ ( 𝑥 = 𝐷 → ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐷 ) ) |
| 24 | 17 20 23 | rextpg | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ { 𝐵 , 𝐶 , 𝐷 } ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝑥 ↔ ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐵 ∨ ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐶 ∨ ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐷 ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ∃ 𝑥 ∈ { 𝐵 , 𝐶 , 𝐷 } ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝑥 ↔ ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐵 ∨ ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐶 ∨ ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐷 ) ) ) |
| 26 | 14 25 | mpbid | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐵 ∨ ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐶 ∨ ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐷 ) ) |
| 27 | snsstp3 | ⊢ { 𝐷 } ⊆ { 𝐵 , 𝐶 , 𝐷 } | |
| 28 | snssg | ⊢ ( 𝐷 ∈ 𝐴 → ( 𝐷 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ { 𝐷 } ⊆ { 𝐵 , 𝐶 , 𝐷 } ) ) | |
| 29 | 8 28 | syl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐷 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ { 𝐷 } ⊆ { 𝐵 , 𝐶 , 𝐷 } ) ) |
| 30 | 27 29 | mpbiri | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝐷 ∈ { 𝐵 , 𝐶 , 𝐷 } ) |
| 31 | breq1 | ⊢ ( 𝑦 = 𝐷 → ( 𝑦 𝑅 𝐵 ↔ 𝐷 𝑅 𝐵 ) ) | |
| 32 | 31 | notbid | ⊢ ( 𝑦 = 𝐷 → ( ¬ 𝑦 𝑅 𝐵 ↔ ¬ 𝐷 𝑅 𝐵 ) ) |
| 33 | 32 | rspcv | ⊢ ( 𝐷 ∈ { 𝐵 , 𝐶 , 𝐷 } → ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐵 → ¬ 𝐷 𝑅 𝐵 ) ) |
| 34 | 30 33 | syl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐵 → ¬ 𝐷 𝑅 𝐵 ) ) |
| 35 | snsstp1 | ⊢ { 𝐵 } ⊆ { 𝐵 , 𝐶 , 𝐷 } | |
| 36 | snssg | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐵 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ { 𝐵 } ⊆ { 𝐵 , 𝐶 , 𝐷 } ) ) | |
| 37 | 5 36 | syl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐵 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ { 𝐵 } ⊆ { 𝐵 , 𝐶 , 𝐷 } ) ) |
| 38 | 35 37 | mpbiri | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝐵 ∈ { 𝐵 , 𝐶 , 𝐷 } ) |
| 39 | breq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝑅 𝐶 ↔ 𝐵 𝑅 𝐶 ) ) | |
| 40 | 39 | notbid | ⊢ ( 𝑦 = 𝐵 → ( ¬ 𝑦 𝑅 𝐶 ↔ ¬ 𝐵 𝑅 𝐶 ) ) |
| 41 | 40 | rspcv | ⊢ ( 𝐵 ∈ { 𝐵 , 𝐶 , 𝐷 } → ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐶 → ¬ 𝐵 𝑅 𝐶 ) ) |
| 42 | 38 41 | syl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐶 → ¬ 𝐵 𝑅 𝐶 ) ) |
| 43 | snsstp2 | ⊢ { 𝐶 } ⊆ { 𝐵 , 𝐶 , 𝐷 } | |
| 44 | snssg | ⊢ ( 𝐶 ∈ 𝐴 → ( 𝐶 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ { 𝐶 } ⊆ { 𝐵 , 𝐶 , 𝐷 } ) ) | |
| 45 | 6 44 | syl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ { 𝐶 } ⊆ { 𝐵 , 𝐶 , 𝐷 } ) ) |
| 46 | 43 45 | mpbiri | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → 𝐶 ∈ { 𝐵 , 𝐶 , 𝐷 } ) |
| 47 | breq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 𝑅 𝐷 ↔ 𝐶 𝑅 𝐷 ) ) | |
| 48 | 47 | notbid | ⊢ ( 𝑦 = 𝐶 → ( ¬ 𝑦 𝑅 𝐷 ↔ ¬ 𝐶 𝑅 𝐷 ) ) |
| 49 | 48 | rspcv | ⊢ ( 𝐶 ∈ { 𝐵 , 𝐶 , 𝐷 } → ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐷 → ¬ 𝐶 𝑅 𝐷 ) ) |
| 50 | 46 49 | syl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐷 → ¬ 𝐶 𝑅 𝐷 ) ) |
| 51 | 34 42 50 | 3orim123d | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐵 ∨ ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐶 ∨ ∀ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐷 } ¬ 𝑦 𝑅 𝐷 ) → ( ¬ 𝐷 𝑅 𝐵 ∨ ¬ 𝐵 𝑅 𝐶 ∨ ¬ 𝐶 𝑅 𝐷 ) ) ) |
| 52 | 26 51 | mpd | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ¬ 𝐷 𝑅 𝐵 ∨ ¬ 𝐵 𝑅 𝐶 ∨ ¬ 𝐶 𝑅 𝐷 ) ) |
| 53 | 3ianor | ⊢ ( ¬ ( 𝐷 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) ↔ ( ¬ 𝐷 𝑅 𝐵 ∨ ¬ 𝐵 𝑅 𝐶 ∨ ¬ 𝐶 𝑅 𝐷 ) ) | |
| 54 | 52 53 | sylibr | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐷 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) ) |
| 55 | 3anrot | ⊢ ( ( 𝐷 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ) ↔ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ∧ 𝐷 𝑅 𝐵 ) ) | |
| 56 | 54 55 | sylnib | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐷 ∧ 𝐷 𝑅 𝐵 ) ) |