This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfon2 . If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfon2lem4.1 | |- A e. _V |
|
| dfon2lem4.2 | |- B e. _V |
||
| Assertion | dfon2lem4 | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( A C_ B \/ B C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon2lem4.1 | |- A e. _V |
|
| 2 | dfon2lem4.2 | |- B e. _V |
|
| 3 | inss1 | |- ( A i^i B ) C_ A |
|
| 4 | 3 | sseli | |- ( ( A i^i B ) e. ( A i^i B ) -> ( A i^i B ) e. A ) |
| 5 | dfon2lem3 | |- ( A e. _V -> ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) -> ( Tr A /\ A. z e. A -. z e. z ) ) ) |
|
| 6 | 1 5 | ax-mp | |- ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) -> ( Tr A /\ A. z e. A -. z e. z ) ) |
| 7 | 6 | simprd | |- ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) -> A. z e. A -. z e. z ) |
| 8 | eleq1 | |- ( z = ( A i^i B ) -> ( z e. z <-> ( A i^i B ) e. z ) ) |
|
| 9 | eleq2 | |- ( z = ( A i^i B ) -> ( ( A i^i B ) e. z <-> ( A i^i B ) e. ( A i^i B ) ) ) |
|
| 10 | 8 9 | bitrd | |- ( z = ( A i^i B ) -> ( z e. z <-> ( A i^i B ) e. ( A i^i B ) ) ) |
| 11 | 10 | notbid | |- ( z = ( A i^i B ) -> ( -. z e. z <-> -. ( A i^i B ) e. ( A i^i B ) ) ) |
| 12 | 11 | rspccv | |- ( A. z e. A -. z e. z -> ( ( A i^i B ) e. A -> -. ( A i^i B ) e. ( A i^i B ) ) ) |
| 13 | 7 12 | syl | |- ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) -> ( ( A i^i B ) e. A -> -. ( A i^i B ) e. ( A i^i B ) ) ) |
| 14 | 13 | adantr | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( ( A i^i B ) e. A -> -. ( A i^i B ) e. ( A i^i B ) ) ) |
| 15 | 4 14 | syl5 | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( ( A i^i B ) e. ( A i^i B ) -> -. ( A i^i B ) e. ( A i^i B ) ) ) |
| 16 | 15 | pm2.01d | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> -. ( A i^i B ) e. ( A i^i B ) ) |
| 17 | elin | |- ( ( A i^i B ) e. ( A i^i B ) <-> ( ( A i^i B ) e. A /\ ( A i^i B ) e. B ) ) |
|
| 18 | 16 17 | sylnib | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> -. ( ( A i^i B ) e. A /\ ( A i^i B ) e. B ) ) |
| 19 | 6 | simpld | |- ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) -> Tr A ) |
| 20 | dfon2lem3 | |- ( B e. _V -> ( A. y ( ( y C. B /\ Tr y ) -> y e. B ) -> ( Tr B /\ A. z e. B -. z e. z ) ) ) |
|
| 21 | 2 20 | ax-mp | |- ( A. y ( ( y C. B /\ Tr y ) -> y e. B ) -> ( Tr B /\ A. z e. B -. z e. z ) ) |
| 22 | 21 | simpld | |- ( A. y ( ( y C. B /\ Tr y ) -> y e. B ) -> Tr B ) |
| 23 | trin | |- ( ( Tr A /\ Tr B ) -> Tr ( A i^i B ) ) |
|
| 24 | 19 22 23 | syl2an | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> Tr ( A i^i B ) ) |
| 25 | 1 | inex1 | |- ( A i^i B ) e. _V |
| 26 | psseq1 | |- ( x = ( A i^i B ) -> ( x C. A <-> ( A i^i B ) C. A ) ) |
|
| 27 | treq | |- ( x = ( A i^i B ) -> ( Tr x <-> Tr ( A i^i B ) ) ) |
|
| 28 | 26 27 | anbi12d | |- ( x = ( A i^i B ) -> ( ( x C. A /\ Tr x ) <-> ( ( A i^i B ) C. A /\ Tr ( A i^i B ) ) ) ) |
| 29 | eleq1 | |- ( x = ( A i^i B ) -> ( x e. A <-> ( A i^i B ) e. A ) ) |
|
| 30 | 28 29 | imbi12d | |- ( x = ( A i^i B ) -> ( ( ( x C. A /\ Tr x ) -> x e. A ) <-> ( ( ( A i^i B ) C. A /\ Tr ( A i^i B ) ) -> ( A i^i B ) e. A ) ) ) |
| 31 | 25 30 | spcv | |- ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) -> ( ( ( A i^i B ) C. A /\ Tr ( A i^i B ) ) -> ( A i^i B ) e. A ) ) |
| 32 | 31 | adantr | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( ( ( A i^i B ) C. A /\ Tr ( A i^i B ) ) -> ( A i^i B ) e. A ) ) |
| 33 | 24 32 | mpan2d | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( ( A i^i B ) C. A -> ( A i^i B ) e. A ) ) |
| 34 | psseq1 | |- ( y = ( A i^i B ) -> ( y C. B <-> ( A i^i B ) C. B ) ) |
|
| 35 | treq | |- ( y = ( A i^i B ) -> ( Tr y <-> Tr ( A i^i B ) ) ) |
|
| 36 | 34 35 | anbi12d | |- ( y = ( A i^i B ) -> ( ( y C. B /\ Tr y ) <-> ( ( A i^i B ) C. B /\ Tr ( A i^i B ) ) ) ) |
| 37 | eleq1 | |- ( y = ( A i^i B ) -> ( y e. B <-> ( A i^i B ) e. B ) ) |
|
| 38 | 36 37 | imbi12d | |- ( y = ( A i^i B ) -> ( ( ( y C. B /\ Tr y ) -> y e. B ) <-> ( ( ( A i^i B ) C. B /\ Tr ( A i^i B ) ) -> ( A i^i B ) e. B ) ) ) |
| 39 | 25 38 | spcv | |- ( A. y ( ( y C. B /\ Tr y ) -> y e. B ) -> ( ( ( A i^i B ) C. B /\ Tr ( A i^i B ) ) -> ( A i^i B ) e. B ) ) |
| 40 | 39 | adantl | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( ( ( A i^i B ) C. B /\ Tr ( A i^i B ) ) -> ( A i^i B ) e. B ) ) |
| 41 | 24 40 | mpan2d | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( ( A i^i B ) C. B -> ( A i^i B ) e. B ) ) |
| 42 | 33 41 | anim12d | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( ( ( A i^i B ) C. A /\ ( A i^i B ) C. B ) -> ( ( A i^i B ) e. A /\ ( A i^i B ) e. B ) ) ) |
| 43 | 18 42 | mtod | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> -. ( ( A i^i B ) C. A /\ ( A i^i B ) C. B ) ) |
| 44 | ianor | |- ( -. ( ( A i^i B ) C. A /\ ( A i^i B ) C. B ) <-> ( -. ( A i^i B ) C. A \/ -. ( A i^i B ) C. B ) ) |
|
| 45 | 43 44 | sylib | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( -. ( A i^i B ) C. A \/ -. ( A i^i B ) C. B ) ) |
| 46 | sspss | |- ( ( A i^i B ) C_ A <-> ( ( A i^i B ) C. A \/ ( A i^i B ) = A ) ) |
|
| 47 | 3 46 | mpbi | |- ( ( A i^i B ) C. A \/ ( A i^i B ) = A ) |
| 48 | inss2 | |- ( A i^i B ) C_ B |
|
| 49 | sspss | |- ( ( A i^i B ) C_ B <-> ( ( A i^i B ) C. B \/ ( A i^i B ) = B ) ) |
|
| 50 | 48 49 | mpbi | |- ( ( A i^i B ) C. B \/ ( A i^i B ) = B ) |
| 51 | orel1 | |- ( -. ( A i^i B ) C. A -> ( ( ( A i^i B ) C. A \/ ( A i^i B ) = A ) -> ( A i^i B ) = A ) ) |
|
| 52 | orc | |- ( ( A i^i B ) = A -> ( ( A i^i B ) = A \/ ( A i^i B ) = B ) ) |
|
| 53 | 51 52 | syl6 | |- ( -. ( A i^i B ) C. A -> ( ( ( A i^i B ) C. A \/ ( A i^i B ) = A ) -> ( ( A i^i B ) = A \/ ( A i^i B ) = B ) ) ) |
| 54 | orel1 | |- ( -. ( A i^i B ) C. B -> ( ( ( A i^i B ) C. B \/ ( A i^i B ) = B ) -> ( A i^i B ) = B ) ) |
|
| 55 | olc | |- ( ( A i^i B ) = B -> ( ( A i^i B ) = A \/ ( A i^i B ) = B ) ) |
|
| 56 | 54 55 | syl6 | |- ( -. ( A i^i B ) C. B -> ( ( ( A i^i B ) C. B \/ ( A i^i B ) = B ) -> ( ( A i^i B ) = A \/ ( A i^i B ) = B ) ) ) |
| 57 | 53 56 | jaoa | |- ( ( -. ( A i^i B ) C. A \/ -. ( A i^i B ) C. B ) -> ( ( ( ( A i^i B ) C. A \/ ( A i^i B ) = A ) /\ ( ( A i^i B ) C. B \/ ( A i^i B ) = B ) ) -> ( ( A i^i B ) = A \/ ( A i^i B ) = B ) ) ) |
| 58 | 47 50 57 | mp2ani | |- ( ( -. ( A i^i B ) C. A \/ -. ( A i^i B ) C. B ) -> ( ( A i^i B ) = A \/ ( A i^i B ) = B ) ) |
| 59 | 45 58 | syl | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( ( A i^i B ) = A \/ ( A i^i B ) = B ) ) |
| 60 | dfss2 | |- ( A C_ B <-> ( A i^i B ) = A ) |
|
| 61 | sseqin2 | |- ( B C_ A <-> ( A i^i B ) = B ) |
|
| 62 | 60 61 | orbi12i | |- ( ( A C_ B \/ B C_ A ) <-> ( ( A i^i B ) = A \/ ( A i^i B ) = B ) ) |
| 63 | 59 62 | sylibr | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( A C_ B \/ B C_ A ) ) |