This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trin | ⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → Tr ( 𝐴 ∩ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 2 | trss | ⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) | |
| 3 | trss | ⊢ ( Tr 𝐵 → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝐵 ) ) | |
| 4 | 2 3 | im2anan9 | ⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 5 | 1 4 | biimtrid | ⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 6 | ssin | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ↔ 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) | |
| 7 | 5 6 | imbitrdi | ⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) ) |
| 8 | 7 | ralrimiv | ⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 9 | dftr3 | ⊢ ( Tr ( 𝐴 ∩ 𝐵 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( Tr 𝐴 ∧ Tr 𝐵 ) → Tr ( 𝐴 ∩ 𝐵 ) ) |