This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of an isomorphism of a category, according to definition 3.8 in Adamek p. 28. (Contributed by AV, 10-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfiso2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| dfiso2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| dfiso2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| dfiso2.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| dfiso2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| dfiso2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| dfiso2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| dfiso2.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| dfiso2.o | ⊢ ⚬ = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) | ||
| dfiso2.p | ⊢ ∗ = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) | ||
| Assertion | dfiso2 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiso2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | dfiso2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | dfiso2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | dfiso2.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 5 | dfiso2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | dfiso2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | dfiso2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 8 | dfiso2.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 9 | dfiso2.o | ⊢ ⚬ = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) | |
| 10 | dfiso2.p | ⊢ ∗ = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) | |
| 11 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 12 | 1 11 3 5 6 4 | isoval | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
| 13 | 12 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
| 14 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 15 | 1 11 3 5 6 14 | invfval | ⊢ ( 𝜑 → ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) = ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ) |
| 16 | 15 | dmeqd | ⊢ ( 𝜑 → dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) = dom ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ) |
| 17 | 16 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ∈ dom ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ) ) |
| 18 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 19 | 1 2 18 8 14 3 5 6 | sectfval | ⊢ ( 𝜑 → ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ) |
| 20 | 1 2 18 8 14 3 6 5 | sectfval | ⊢ ( 𝜑 → ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) = { 〈 𝑔 , 𝑓 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } ) |
| 21 | 20 | cnveqd | ⊢ ( 𝜑 → ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) = ◡ { 〈 𝑔 , 𝑓 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } ) |
| 22 | cnvopab | ⊢ ◡ { 〈 𝑔 , 𝑓 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } | |
| 23 | 21 22 | eqtrdi | ⊢ ( 𝜑 → ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } ) |
| 24 | 19 23 | ineq12d | ⊢ ( 𝜑 → ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) = ( { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ∩ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } ) ) |
| 25 | inopab | ⊢ ( { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ∩ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) ∧ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } | |
| 26 | an4 | ⊢ ( ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) ∧ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) | |
| 27 | an42 | ⊢ ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) ↔ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ) | |
| 28 | anidm | ⊢ ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) | |
| 29 | 27 28 | bitri | ⊢ ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) |
| 30 | 29 | anbi1i | ⊢ ( ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
| 31 | 26 30 | bitri | ⊢ ( ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) ∧ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
| 32 | 31 | opabbii | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) ∧ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } |
| 33 | 25 32 | eqtri | ⊢ ( { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ∩ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) } ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } |
| 34 | 24 33 | eqtrdi | ⊢ ( 𝜑 → ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } ) |
| 35 | 34 | dmeqd | ⊢ ( 𝜑 → dom ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) = dom { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } ) |
| 36 | dmopab | ⊢ dom { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } = { 𝑓 ∣ ∃ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } | |
| 37 | 35 36 | eqtrdi | ⊢ ( 𝜑 → dom ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) = { 𝑓 ∣ ∃ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } ) |
| 38 | 37 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ↔ 𝐹 ∈ { 𝑓 ∣ ∃ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } ) ) |
| 39 | eleq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ) | |
| 40 | 39 | anbi1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ) |
| 41 | oveq2 | ⊢ ( 𝑓 = 𝐹 → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) | |
| 42 | 41 | eqeq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ↔ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
| 43 | oveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) ) | |
| 44 | 43 | eqeq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ↔ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) |
| 45 | 42 44 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ↔ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
| 46 | 40 45 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) ) |
| 47 | 46 | exbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ∃ 𝑔 ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) ) |
| 48 | 47 | elabg | ⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝐹 ∈ { 𝑓 ∣ ∃ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } ↔ ∃ 𝑔 ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) ) |
| 49 | 7 48 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ { 𝑓 ∣ ∃ 𝑔 ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝑓 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) } ↔ ∃ 𝑔 ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) ) |
| 50 | 7 | biantrurd | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ) |
| 51 | 50 | bicomd | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ↔ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) |
| 52 | 9 | a1i | ⊢ ( 𝜑 → ⚬ = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ) |
| 53 | 52 | eqcomd | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) = ⚬ ) |
| 54 | 53 | oveqd | ⊢ ( 𝜑 → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 𝑔 ⚬ 𝐹 ) ) |
| 55 | 54 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ↔ ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
| 56 | 10 | a1i | ⊢ ( 𝜑 → ∗ = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ) |
| 57 | 56 | eqcomd | ⊢ ( 𝜑 → ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) = ∗ ) |
| 58 | 57 | oveqd | ⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ∗ 𝑔 ) ) |
| 59 | 58 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ↔ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) |
| 60 | 55 59 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ↔ ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
| 61 | 51 60 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) ) |
| 62 | 61 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑔 ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ∃ 𝑔 ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) ) |
| 63 | df-rex | ⊢ ( ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ↔ ∃ 𝑔 ( 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) | |
| 64 | 62 63 | bitr4di | ⊢ ( 𝜑 → ( ∃ 𝑔 ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
| 65 | 38 49 64 | 3bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
| 66 | 13 17 65 | 3bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ⚬ 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ∗ 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |