This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfiso3.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| dfiso3.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| dfiso3.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| dfiso3.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| dfiso3.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| dfiso3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| dfiso3.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| dfiso3.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| Assertion | dfiso3 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiso3.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | dfiso3.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | dfiso3.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 4 | dfiso3.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 5 | dfiso3.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 6 | dfiso3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | dfiso3.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | dfiso3.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 9 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 10 | eqid | ⊢ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) | |
| 11 | eqid | ⊢ ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) | |
| 12 | 1 2 5 3 6 7 8 9 10 11 | dfiso2 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) ) |
| 13 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 14 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐶 ∈ Cat ) |
| 15 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝑌 ∈ 𝐵 ) |
| 16 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) | |
| 18 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 19 | 1 2 13 9 4 14 15 16 17 18 | issect2 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹 ↔ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
| 20 | 1 2 13 9 4 14 16 15 18 17 | issect2 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ↔ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 21 | 19 20 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ) ↔ ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 22 | ancom | ⊢ ( ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) | |
| 23 | 21 22 | bitr2di | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ↔ ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ) ) ) |
| 24 | 23 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ) ) ) |
| 25 | 12 24 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( 𝑔 ( 𝑌 𝑆 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝑔 ) ) ) |