This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the section relation. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| issect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| issect.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| issect.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| issect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| issect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| issect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| issect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | sectfval | ⊢ ( 𝜑 → ( 𝑋 𝑆 𝑌 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | issect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | issect.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | issect.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 5 | issect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 6 | issect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 7 | issect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | issect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | 1 2 3 4 5 6 | sectffval | ⊢ ( 𝜑 → 𝑆 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } ) ) |
| 10 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 ) | |
| 11 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) | |
| 12 | 10 11 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 13 | 12 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 14 | 11 10 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑦 𝐻 𝑥 ) = ( 𝑌 𝐻 𝑋 ) ) |
| 15 | 14 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ↔ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) |
| 16 | 13 15 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ) ) |
| 17 | 10 11 | opeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑋 , 𝑌 〉 ) |
| 18 | 17 10 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) ) |
| 19 | 18 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) ) |
| 20 | 10 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 1 ‘ 𝑥 ) = ( 1 ‘ 𝑋 ) ) |
| 21 | 19 20 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ↔ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) ) |
| 22 | 16 21 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) ↔ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) ) ) |
| 23 | 22 | opabbidv | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑥 ) 𝑓 ) = ( 1 ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ) |
| 24 | ovex | ⊢ ( 𝑋 𝐻 𝑌 ) ∈ V | |
| 25 | ovex | ⊢ ( 𝑌 𝐻 𝑋 ) ∈ V | |
| 26 | 24 25 | xpex | ⊢ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ∈ V |
| 27 | opabssxp | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) | |
| 28 | 26 27 | ssexi | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ∈ V |
| 29 | 28 | a1i | ⊢ ( 𝜑 → { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ∈ V ) |
| 30 | 9 23 7 8 29 | ovmpod | ⊢ ( 𝜑 → ( 𝑋 𝑆 𝑌 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ) |