This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invfval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| invfval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| invfval.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| Assertion | invfval | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) = ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | invfval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | invfval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | invfval.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 7 | 1 2 3 6 | invffval | ⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) ) ) |
| 8 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 ) | |
| 9 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) | |
| 10 | 8 9 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 𝑆 𝑦 ) = ( 𝑋 𝑆 𝑌 ) ) |
| 11 | 9 8 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑦 𝑆 𝑥 ) = ( 𝑌 𝑆 𝑋 ) ) |
| 12 | 11 | cnveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ◡ ( 𝑦 𝑆 𝑥 ) = ◡ ( 𝑌 𝑆 𝑋 ) ) |
| 13 | 10 12 | ineq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( 𝑥 𝑆 𝑦 ) ∩ ◡ ( 𝑦 𝑆 𝑥 ) ) = ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) ) |
| 14 | ovex | ⊢ ( 𝑋 𝑆 𝑌 ) ∈ V | |
| 15 | 14 | inex1 | ⊢ ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) ∈ V |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) ∈ V ) |
| 17 | 7 13 4 5 16 | ovmpod | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) = ( ( 𝑋 𝑆 𝑌 ) ∩ ◡ ( 𝑌 𝑆 𝑋 ) ) ) |