This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The isomorphisms are the domain of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof shortened by AV, 21-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| isoval.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| Assertion | isoval | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | isoval.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 7 | isofval | ⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ ( Inv ‘ 𝐶 ) ) ) | |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → ( Iso ‘ 𝐶 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ ( Inv ‘ 𝐶 ) ) ) |
| 9 | 2 | coeq2i | ⊢ ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ ( Inv ‘ 𝐶 ) ) |
| 10 | 8 6 9 | 3eqtr4g | ⊢ ( 𝜑 → 𝐼 = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) ) |
| 11 | 10 | oveqd | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = ( 𝑋 ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) 𝑌 ) ) |
| 12 | eqid | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) | |
| 13 | ovex | ⊢ ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∈ V | |
| 14 | 13 | inex1 | ⊢ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ∈ V |
| 15 | 12 14 | fnmpoi | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) Fn ( 𝐵 × 𝐵 ) |
| 16 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 17 | 1 2 3 16 | invffval | ⊢ ( 𝜑 → 𝑁 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) ) |
| 18 | 17 | fneq1d | ⊢ ( 𝜑 → ( 𝑁 Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Sect ‘ 𝐶 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝐶 ) 𝑥 ) ) ) Fn ( 𝐵 × 𝐵 ) ) ) |
| 19 | 15 18 | mpbiri | ⊢ ( 𝜑 → 𝑁 Fn ( 𝐵 × 𝐵 ) ) |
| 20 | 4 5 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 21 | fvco2 | ⊢ ( ( 𝑁 Fn ( 𝐵 × 𝐵 ) ∧ 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) → ( ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) ) ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) ) ) |
| 23 | df-ov | ⊢ ( 𝑋 ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) 𝑌 ) = ( ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 24 | ovex | ⊢ ( 𝑋 𝑁 𝑌 ) ∈ V | |
| 25 | dmeq | ⊢ ( 𝑧 = ( 𝑋 𝑁 𝑌 ) → dom 𝑧 = dom ( 𝑋 𝑁 𝑌 ) ) | |
| 26 | eqid | ⊢ ( 𝑧 ∈ V ↦ dom 𝑧 ) = ( 𝑧 ∈ V ↦ dom 𝑧 ) | |
| 27 | 24 | dmex | ⊢ dom ( 𝑋 𝑁 𝑌 ) ∈ V |
| 28 | 25 26 27 | fvmpt | ⊢ ( ( 𝑋 𝑁 𝑌 ) ∈ V → ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑋 𝑁 𝑌 ) ) = dom ( 𝑋 𝑁 𝑌 ) ) |
| 29 | 24 28 | ax-mp | ⊢ ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑋 𝑁 𝑌 ) ) = dom ( 𝑋 𝑁 𝑌 ) |
| 30 | df-ov | ⊢ ( 𝑋 𝑁 𝑌 ) = ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 31 | 30 | fveq2i | ⊢ ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑋 𝑁 𝑌 ) ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 32 | 29 31 | eqtr3i | ⊢ dom ( 𝑋 𝑁 𝑌 ) = ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ‘ ( 𝑁 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 33 | 22 23 32 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝑋 ( ( 𝑧 ∈ V ↦ dom 𝑧 ) ∘ 𝑁 ) 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) ) |
| 34 | 11 33 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) ) |