This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions x and y of the equations ( a .+ x ) = b and ( x .+ a ) = b exist. Theorem 3.2 of Bruck p. 28. (Contributed by AV, 28-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgrp3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| dfgrp3.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | dfgrp3 | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrp3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | dfgrp3.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpsgrp | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Smgrp ) | |
| 4 | 1 | grpbn0 | ⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
| 5 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) | |
| 6 | simpr | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 8 | simpl | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 10 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 11 | 1 10 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 12 | 5 7 9 11 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 13 | oveq1 | ⊢ ( 𝑙 = ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) → ( 𝑙 + 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑙 = ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) → ( ( 𝑙 + 𝑥 ) = 𝑦 ↔ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) = 𝑦 ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑙 = ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ) → ( ( 𝑙 + 𝑥 ) = 𝑦 ↔ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) = 𝑦 ) ) |
| 16 | 1 2 10 | grpnpcan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) = 𝑦 ) |
| 17 | 5 7 9 16 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) + 𝑥 ) = 𝑦 ) |
| 18 | 12 15 17 | rspcedvd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ) |
| 19 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 20 | 1 19 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 21 | 20 | adantrr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 22 | 1 2 5 21 7 | grpcld | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ∈ 𝐵 ) |
| 23 | oveq2 | ⊢ ( 𝑟 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) → ( 𝑥 + 𝑟 ) = ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) ) | |
| 24 | 23 | eqeq1d | ⊢ ( 𝑟 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) → ( ( 𝑥 + 𝑟 ) = 𝑦 ↔ ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) = 𝑦 ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑟 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) → ( ( 𝑥 + 𝑟 ) = 𝑦 ↔ ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) = 𝑦 ) ) |
| 26 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 27 | 1 2 26 19 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
| 28 | 27 | adantrr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
| 29 | 28 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) + 𝑦 ) = ( ( 0g ‘ 𝐺 ) + 𝑦 ) ) |
| 30 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) + 𝑦 ) = ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) ) |
| 31 | 5 9 21 7 30 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 + ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) + 𝑦 ) = ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) ) |
| 32 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 33 | 1 2 26 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) |
| 34 | 32 6 33 | syl2an | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) |
| 35 | 29 31 34 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) + 𝑦 ) ) = 𝑦 ) |
| 36 | 22 25 35 | rspcedvd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) |
| 37 | 18 36 | jca | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) |
| 38 | 37 | ralrimivva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) |
| 39 | 3 4 38 | 3jca | ⊢ ( 𝐺 ∈ Grp → ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) |
| 40 | simp1 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → 𝐺 ∈ Smgrp ) | |
| 41 | 1 2 | dfgrp3lem | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) |
| 42 | 1 2 | dfgrp2 | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) ) |
| 43 | 40 41 42 | sylanbrc | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → 𝐺 ∈ Grp ) |
| 44 | 39 43 | impbii | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) |