This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfgrp3 . (Contributed by AV, 28-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgrp3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| dfgrp3.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | dfgrp3lem | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrp3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | dfgrp3.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | simp2 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → 𝐵 ≠ ∅ ) | |
| 4 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐵 ) | |
| 5 | 3 4 | sylib | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑤 𝑤 ∈ 𝐵 ) |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑙 + 𝑥 ) = ( 𝑙 + 𝑤 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑙 + 𝑥 ) = 𝑦 ↔ ( 𝑙 + 𝑤 ) = 𝑦 ) ) |
| 8 | 7 | rexbidv | ⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ↔ ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ) ) |
| 9 | oveq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 + 𝑟 ) = ( 𝑤 + 𝑟 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 + 𝑟 ) = 𝑦 ↔ ( 𝑤 + 𝑟 ) = 𝑦 ) ) |
| 11 | 10 | rexbidv | ⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ↔ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ) |
| 12 | 8 11 | anbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ↔ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ) ) |
| 14 | 13 | rspcv | ⊢ ( 𝑤 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ) ) |
| 15 | eqeq2 | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑙 + 𝑤 ) = 𝑦 ↔ ( 𝑙 + 𝑤 ) = 𝑤 ) ) | |
| 16 | 15 | rexbidv | ⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ↔ ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑤 ) ) |
| 17 | eqeq2 | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑤 + 𝑟 ) = 𝑦 ↔ ( 𝑤 + 𝑟 ) = 𝑤 ) ) | |
| 18 | 17 | rexbidv | ⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ↔ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑤 ) ) |
| 19 | 16 18 | anbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ↔ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑤 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑤 ) ) ) |
| 20 | 19 | rspcva | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ) → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑤 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑤 ) ) |
| 21 | oveq1 | ⊢ ( 𝑙 = 𝑢 → ( 𝑙 + 𝑤 ) = ( 𝑢 + 𝑤 ) ) | |
| 22 | 21 | eqeq1d | ⊢ ( 𝑙 = 𝑢 → ( ( 𝑙 + 𝑤 ) = 𝑤 ↔ ( 𝑢 + 𝑤 ) = 𝑤 ) ) |
| 23 | 22 | cbvrexvw | ⊢ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑤 ↔ ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) |
| 24 | 23 | biimpi | ⊢ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑤 → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) |
| 25 | 24 | adantr | ⊢ ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑤 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑤 ) → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) |
| 26 | 20 25 | syl | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) |
| 27 | 26 | ex | ⊢ ( 𝑤 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) ) |
| 28 | 14 27 | syldc | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ( 𝑤 ∈ 𝐵 → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) ) |
| 29 | 28 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( 𝑤 ∈ 𝐵 → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) ) |
| 30 | 29 | imp | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) → ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 ) |
| 31 | eqeq2 | ⊢ ( 𝑦 = 𝑎 → ( ( 𝑙 + 𝑤 ) = 𝑦 ↔ ( 𝑙 + 𝑤 ) = 𝑎 ) ) | |
| 32 | 31 | rexbidv | ⊢ ( 𝑦 = 𝑎 → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ↔ ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑎 ) ) |
| 33 | eqeq2 | ⊢ ( 𝑦 = 𝑎 → ( ( 𝑤 + 𝑟 ) = 𝑦 ↔ ( 𝑤 + 𝑟 ) = 𝑎 ) ) | |
| 34 | 33 | rexbidv | ⊢ ( 𝑦 = 𝑎 → ( ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ↔ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) ) |
| 35 | 32 34 | anbi12d | ⊢ ( 𝑦 = 𝑎 → ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑦 ) ↔ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑎 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) ) ) |
| 36 | 12 35 | rspc2va | ⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑤 ) = 𝑎 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) ) |
| 37 | 36 | simprd | ⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) |
| 38 | 37 | expcom | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) ) |
| 39 | 38 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) ) |
| 40 | 39 | impl | ⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) |
| 41 | 40 | ad2ant2r | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ) |
| 42 | oveq2 | ⊢ ( 𝑟 = 𝑧 → ( 𝑤 + 𝑟 ) = ( 𝑤 + 𝑧 ) ) | |
| 43 | 42 | eqeq1d | ⊢ ( 𝑟 = 𝑧 → ( ( 𝑤 + 𝑟 ) = 𝑎 ↔ ( 𝑤 + 𝑧 ) = 𝑎 ) ) |
| 44 | 43 | cbvrexvw | ⊢ ( ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑤 + 𝑧 ) = 𝑎 ) |
| 45 | simpll1 | ⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) → 𝐺 ∈ Smgrp ) | |
| 46 | 45 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → 𝐺 ∈ Smgrp ) |
| 47 | simplr | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑢 ∈ 𝐵 ) | |
| 48 | simpllr | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) | |
| 49 | simprr | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) | |
| 50 | 1 2 | sgrpass | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑤 ) + 𝑧 ) = ( 𝑢 + ( 𝑤 + 𝑧 ) ) ) |
| 51 | 46 47 48 49 50 | syl13anc | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑤 ) + 𝑧 ) = ( 𝑢 + ( 𝑤 + 𝑧 ) ) ) |
| 52 | simprl | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑢 + 𝑤 ) = 𝑤 ) | |
| 53 | 52 | oveq1d | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑤 ) + 𝑧 ) = ( 𝑤 + 𝑧 ) ) |
| 54 | 51 53 | eqtr3d | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( ( 𝑢 + 𝑤 ) = 𝑤 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑢 + ( 𝑤 + 𝑧 ) ) = ( 𝑤 + 𝑧 ) ) |
| 55 | 54 | anassrs | ⊢ ( ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑢 + ( 𝑤 + 𝑧 ) ) = ( 𝑤 + 𝑧 ) ) |
| 56 | oveq2 | ⊢ ( ( 𝑤 + 𝑧 ) = 𝑎 → ( 𝑢 + ( 𝑤 + 𝑧 ) ) = ( 𝑢 + 𝑎 ) ) | |
| 57 | id | ⊢ ( ( 𝑤 + 𝑧 ) = 𝑎 → ( 𝑤 + 𝑧 ) = 𝑎 ) | |
| 58 | 56 57 | eqeq12d | ⊢ ( ( 𝑤 + 𝑧 ) = 𝑎 → ( ( 𝑢 + ( 𝑤 + 𝑧 ) ) = ( 𝑤 + 𝑧 ) ↔ ( 𝑢 + 𝑎 ) = 𝑎 ) ) |
| 59 | 55 58 | syl5ibcom | ⊢ ( ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑤 + 𝑧 ) = 𝑎 → ( 𝑢 + 𝑎 ) = 𝑎 ) ) |
| 60 | 59 | rexlimdva | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) → ( ∃ 𝑧 ∈ 𝐵 ( 𝑤 + 𝑧 ) = 𝑎 → ( 𝑢 + 𝑎 ) = 𝑎 ) ) |
| 61 | 44 60 | biimtrid | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) → ( ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 → ( 𝑢 + 𝑎 ) = 𝑎 ) ) |
| 62 | 61 | adantrl | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ) → ( ∃ 𝑟 ∈ 𝐵 ( 𝑤 + 𝑟 ) = 𝑎 → ( 𝑢 + 𝑎 ) = 𝑎 ) ) |
| 63 | 41 62 | mpd | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ) → ( 𝑢 + 𝑎 ) = 𝑎 ) |
| 64 | oveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝑙 + 𝑥 ) = ( 𝑙 + 𝑎 ) ) | |
| 65 | 64 | eqeq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑙 + 𝑥 ) = 𝑦 ↔ ( 𝑙 + 𝑎 ) = 𝑦 ) ) |
| 66 | 65 | rexbidv | ⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ↔ ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑦 ) ) |
| 67 | oveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 + 𝑟 ) = ( 𝑎 + 𝑟 ) ) | |
| 68 | 67 | eqeq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 + 𝑟 ) = 𝑦 ↔ ( 𝑎 + 𝑟 ) = 𝑦 ) ) |
| 69 | 68 | rexbidv | ⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ↔ ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑦 ) ) |
| 70 | 66 69 | anbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ↔ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑦 ) ) ) |
| 71 | eqeq2 | ⊢ ( 𝑦 = 𝑢 → ( ( 𝑙 + 𝑎 ) = 𝑦 ↔ ( 𝑙 + 𝑎 ) = 𝑢 ) ) | |
| 72 | 71 | rexbidv | ⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑦 ↔ ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) ) |
| 73 | eqeq2 | ⊢ ( 𝑦 = 𝑢 → ( ( 𝑎 + 𝑟 ) = 𝑦 ↔ ( 𝑎 + 𝑟 ) = 𝑢 ) ) | |
| 74 | 73 | rexbidv | ⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑦 ↔ ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑢 ) ) |
| 75 | 72 74 | anbi12d | ⊢ ( 𝑦 = 𝑢 → ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑦 ) ↔ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑢 ) ) ) |
| 76 | 70 75 | rspc2va | ⊢ ( ( ( 𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑎 + 𝑟 ) = 𝑢 ) ) |
| 77 | 76 | simpld | ⊢ ( ( ( 𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) |
| 78 | 77 | ex | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) ) |
| 79 | 78 | ancoms | ⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) ) |
| 80 | 79 | com12 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ( ( 𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) ) |
| 81 | 80 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( ( 𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) ) |
| 82 | 81 | impl | ⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ) |
| 83 | oveq1 | ⊢ ( 𝑙 = 𝑖 → ( 𝑙 + 𝑎 ) = ( 𝑖 + 𝑎 ) ) | |
| 84 | 83 | eqeq1d | ⊢ ( 𝑙 = 𝑖 → ( ( 𝑙 + 𝑎 ) = 𝑢 ↔ ( 𝑖 + 𝑎 ) = 𝑢 ) ) |
| 85 | 84 | cbvrexvw | ⊢ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑎 ) = 𝑢 ↔ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) |
| 86 | 82 85 | sylib | ⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) |
| 87 | 86 | adantllr | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) |
| 88 | 87 | adantrr | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ) → ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) |
| 89 | 63 88 | jca | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ ( 𝑢 + 𝑤 ) = 𝑤 ) ) → ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) |
| 90 | 89 | expr | ⊢ ( ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑢 + 𝑤 ) = 𝑤 → ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) ) |
| 91 | 90 | ralrimdva | ⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝑢 + 𝑤 ) = 𝑤 → ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) ) |
| 92 | 91 | reximdva | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( ∃ 𝑢 ∈ 𝐵 ( 𝑢 + 𝑤 ) = 𝑤 → ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) ) |
| 93 | 30 92 | mpd | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ∧ 𝑤 ∈ 𝐵 ) → ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) |
| 94 | 5 93 | exlimddv | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∃ 𝑢 ∈ 𝐵 ∀ 𝑎 ∈ 𝐵 ( ( 𝑢 + 𝑎 ) = 𝑎 ∧ ∃ 𝑖 ∈ 𝐵 ( 𝑖 + 𝑎 ) = 𝑢 ) ) |