This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a group as a set with a closed, associative operation, for which solutions x and y of the equations ( a .+ x ) = b and ( x .+ a ) = b exist. Exercise 1 of Herstein p. 57. (Contributed by NM, 5-Dec-2006) (Revised by AV, 28-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgrp3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| dfgrp3.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | dfgrp3e | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrp3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | dfgrp3.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | 1 2 | dfgrp3 | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) |
| 4 | simp2 | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → 𝐵 ≠ ∅ ) | |
| 5 | sgrpmgm | ⊢ ( 𝐺 ∈ Smgrp → 𝐺 ∈ Mgm ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) → 𝐺 ∈ Mgm ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐺 ∈ Mgm ) |
| 8 | simpr | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 10 | simpr | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 11 | 1 2 | mgmcl | ⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 12 | 7 9 10 11 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 13 | 12 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 14 | 1 2 | sgrpass | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 15 | 14 | 3anassrs | ⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 16 | 15 | ralrimiva | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 18 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) | |
| 19 | 13 17 18 | 3jca | ⊢ ( ( ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) |
| 20 | 19 | ex | ⊢ ( ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) ) |
| 21 | 20 | ralimdva | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) ) |
| 22 | 21 | ralimdva | ⊢ ( 𝐺 ∈ Smgrp → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) ) |
| 23 | 22 | a1d | ⊢ ( 𝐺 ∈ Smgrp → ( 𝐵 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) ) ) |
| 24 | 23 | 3imp | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) |
| 25 | 4 24 | jca | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) ) |
| 26 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ 𝐵 ) | |
| 27 | 3simpa | ⊢ ( ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) | |
| 28 | 27 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
| 29 | 1 2 | issgrpn0 | ⊢ ( 𝑎 ∈ 𝐵 → ( 𝐺 ∈ Smgrp ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) ) |
| 30 | 28 29 | imbitrrid | ⊢ ( 𝑎 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → 𝐺 ∈ Smgrp ) ) |
| 31 | 30 | exlimiv | ⊢ ( ∃ 𝑎 𝑎 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → 𝐺 ∈ Smgrp ) ) |
| 32 | 26 31 | sylbi | ⊢ ( 𝐵 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → 𝐺 ∈ Smgrp ) ) |
| 33 | 32 | imp | ⊢ ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) → 𝐺 ∈ Smgrp ) |
| 34 | simpl | ⊢ ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) → 𝐵 ≠ ∅ ) | |
| 35 | simp3 | ⊢ ( ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) | |
| 36 | 35 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) |
| 38 | 33 34 37 | 3jca | ⊢ ( ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) → ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) |
| 39 | 25 38 | impbii | ⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ↔ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) ) |
| 40 | 3 39 | bitri | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ∧ ( ∃ 𝑙 ∈ 𝐵 ( 𝑙 + 𝑥 ) = 𝑦 ∧ ∃ 𝑟 ∈ 𝐵 ( 𝑥 + 𝑟 ) = 𝑦 ) ) ) ) |