This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of the axiom of choice with a statement related to ac9 ; definition AC3 of Schechter p. 139. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac9 | |- ( CHOICE <-> A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac3 | |- ( CHOICE <-> A. s E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
|
| 2 | vex | |- f e. _V |
|
| 3 | 2 | rnex | |- ran f e. _V |
| 4 | raleq | |- ( s = ran f -> ( A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) <-> A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) ) |
|
| 5 | 4 | exbidv | |- ( s = ran f -> ( E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) <-> E. g A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) ) |
| 6 | 3 5 | spcv | |- ( A. s E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) -> E. g A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) |
| 7 | df-nel | |- ( (/) e/ ran f <-> -. (/) e. ran f ) |
|
| 8 | 7 | biimpi | |- ( (/) e/ ran f -> -. (/) e. ran f ) |
| 9 | 8 | ad2antlr | |- ( ( ( Fun f /\ (/) e/ ran f ) /\ x e. dom f ) -> -. (/) e. ran f ) |
| 10 | fvelrn | |- ( ( Fun f /\ x e. dom f ) -> ( f ` x ) e. ran f ) |
|
| 11 | 10 | adantlr | |- ( ( ( Fun f /\ (/) e/ ran f ) /\ x e. dom f ) -> ( f ` x ) e. ran f ) |
| 12 | eleq1 | |- ( ( f ` x ) = (/) -> ( ( f ` x ) e. ran f <-> (/) e. ran f ) ) |
|
| 13 | 11 12 | syl5ibcom | |- ( ( ( Fun f /\ (/) e/ ran f ) /\ x e. dom f ) -> ( ( f ` x ) = (/) -> (/) e. ran f ) ) |
| 14 | 13 | necon3bd | |- ( ( ( Fun f /\ (/) e/ ran f ) /\ x e. dom f ) -> ( -. (/) e. ran f -> ( f ` x ) =/= (/) ) ) |
| 15 | 9 14 | mpd | |- ( ( ( Fun f /\ (/) e/ ran f ) /\ x e. dom f ) -> ( f ` x ) =/= (/) ) |
| 16 | 15 | adantlr | |- ( ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) /\ x e. dom f ) -> ( f ` x ) =/= (/) ) |
| 17 | neeq1 | |- ( t = ( f ` x ) -> ( t =/= (/) <-> ( f ` x ) =/= (/) ) ) |
|
| 18 | fveq2 | |- ( t = ( f ` x ) -> ( g ` t ) = ( g ` ( f ` x ) ) ) |
|
| 19 | id | |- ( t = ( f ` x ) -> t = ( f ` x ) ) |
|
| 20 | 18 19 | eleq12d | |- ( t = ( f ` x ) -> ( ( g ` t ) e. t <-> ( g ` ( f ` x ) ) e. ( f ` x ) ) ) |
| 21 | 17 20 | imbi12d | |- ( t = ( f ` x ) -> ( ( t =/= (/) -> ( g ` t ) e. t ) <-> ( ( f ` x ) =/= (/) -> ( g ` ( f ` x ) ) e. ( f ` x ) ) ) ) |
| 22 | simplr | |- ( ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) /\ x e. dom f ) -> A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) |
|
| 23 | 10 | ad4ant14 | |- ( ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) /\ x e. dom f ) -> ( f ` x ) e. ran f ) |
| 24 | 21 22 23 | rspcdva | |- ( ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) /\ x e. dom f ) -> ( ( f ` x ) =/= (/) -> ( g ` ( f ` x ) ) e. ( f ` x ) ) ) |
| 25 | 16 24 | mpd | |- ( ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) /\ x e. dom f ) -> ( g ` ( f ` x ) ) e. ( f ` x ) ) |
| 26 | 25 | ralrimiva | |- ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) -> A. x e. dom f ( g ` ( f ` x ) ) e. ( f ` x ) ) |
| 27 | 2 | dmex | |- dom f e. _V |
| 28 | mptelixpg | |- ( dom f e. _V -> ( ( x e. dom f |-> ( g ` ( f ` x ) ) ) e. X_ x e. dom f ( f ` x ) <-> A. x e. dom f ( g ` ( f ` x ) ) e. ( f ` x ) ) ) |
|
| 29 | 27 28 | ax-mp | |- ( ( x e. dom f |-> ( g ` ( f ` x ) ) ) e. X_ x e. dom f ( f ` x ) <-> A. x e. dom f ( g ` ( f ` x ) ) e. ( f ` x ) ) |
| 30 | 26 29 | sylibr | |- ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) -> ( x e. dom f |-> ( g ` ( f ` x ) ) ) e. X_ x e. dom f ( f ` x ) ) |
| 31 | 30 | ne0d | |- ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) -> X_ x e. dom f ( f ` x ) =/= (/) ) |
| 32 | 31 | ex | |- ( ( Fun f /\ (/) e/ ran f ) -> ( A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |
| 33 | 32 | exlimdv | |- ( ( Fun f /\ (/) e/ ran f ) -> ( E. g A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |
| 34 | 6 33 | syl5com | |- ( A. s E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) -> ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |
| 35 | 34 | alrimiv | |- ( A. s E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) -> A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |
| 36 | fnresi | |- ( _I |` ( s \ { (/) } ) ) Fn ( s \ { (/) } ) |
|
| 37 | fnfun | |- ( ( _I |` ( s \ { (/) } ) ) Fn ( s \ { (/) } ) -> Fun ( _I |` ( s \ { (/) } ) ) ) |
|
| 38 | 36 37 | ax-mp | |- Fun ( _I |` ( s \ { (/) } ) ) |
| 39 | neldifsn | |- -. (/) e. ( s \ { (/) } ) |
|
| 40 | vex | |- s e. _V |
|
| 41 | 40 | difexi | |- ( s \ { (/) } ) e. _V |
| 42 | resiexg | |- ( ( s \ { (/) } ) e. _V -> ( _I |` ( s \ { (/) } ) ) e. _V ) |
|
| 43 | 41 42 | ax-mp | |- ( _I |` ( s \ { (/) } ) ) e. _V |
| 44 | funeq | |- ( f = ( _I |` ( s \ { (/) } ) ) -> ( Fun f <-> Fun ( _I |` ( s \ { (/) } ) ) ) ) |
|
| 45 | rneq | |- ( f = ( _I |` ( s \ { (/) } ) ) -> ran f = ran ( _I |` ( s \ { (/) } ) ) ) |
|
| 46 | rnresi | |- ran ( _I |` ( s \ { (/) } ) ) = ( s \ { (/) } ) |
|
| 47 | 45 46 | eqtrdi | |- ( f = ( _I |` ( s \ { (/) } ) ) -> ran f = ( s \ { (/) } ) ) |
| 48 | 47 | eleq2d | |- ( f = ( _I |` ( s \ { (/) } ) ) -> ( (/) e. ran f <-> (/) e. ( s \ { (/) } ) ) ) |
| 49 | 48 | notbid | |- ( f = ( _I |` ( s \ { (/) } ) ) -> ( -. (/) e. ran f <-> -. (/) e. ( s \ { (/) } ) ) ) |
| 50 | 7 49 | bitrid | |- ( f = ( _I |` ( s \ { (/) } ) ) -> ( (/) e/ ran f <-> -. (/) e. ( s \ { (/) } ) ) ) |
| 51 | 44 50 | anbi12d | |- ( f = ( _I |` ( s \ { (/) } ) ) -> ( ( Fun f /\ (/) e/ ran f ) <-> ( Fun ( _I |` ( s \ { (/) } ) ) /\ -. (/) e. ( s \ { (/) } ) ) ) ) |
| 52 | dmeq | |- ( f = ( _I |` ( s \ { (/) } ) ) -> dom f = dom ( _I |` ( s \ { (/) } ) ) ) |
|
| 53 | dmresi | |- dom ( _I |` ( s \ { (/) } ) ) = ( s \ { (/) } ) |
|
| 54 | 52 53 | eqtrdi | |- ( f = ( _I |` ( s \ { (/) } ) ) -> dom f = ( s \ { (/) } ) ) |
| 55 | 54 | ixpeq1d | |- ( f = ( _I |` ( s \ { (/) } ) ) -> X_ x e. dom f ( f ` x ) = X_ x e. ( s \ { (/) } ) ( f ` x ) ) |
| 56 | fveq1 | |- ( f = ( _I |` ( s \ { (/) } ) ) -> ( f ` x ) = ( ( _I |` ( s \ { (/) } ) ) ` x ) ) |
|
| 57 | fvresi | |- ( x e. ( s \ { (/) } ) -> ( ( _I |` ( s \ { (/) } ) ) ` x ) = x ) |
|
| 58 | 56 57 | sylan9eq | |- ( ( f = ( _I |` ( s \ { (/) } ) ) /\ x e. ( s \ { (/) } ) ) -> ( f ` x ) = x ) |
| 59 | 58 | ixpeq2dva | |- ( f = ( _I |` ( s \ { (/) } ) ) -> X_ x e. ( s \ { (/) } ) ( f ` x ) = X_ x e. ( s \ { (/) } ) x ) |
| 60 | 55 59 | eqtrd | |- ( f = ( _I |` ( s \ { (/) } ) ) -> X_ x e. dom f ( f ` x ) = X_ x e. ( s \ { (/) } ) x ) |
| 61 | 60 | neeq1d | |- ( f = ( _I |` ( s \ { (/) } ) ) -> ( X_ x e. dom f ( f ` x ) =/= (/) <-> X_ x e. ( s \ { (/) } ) x =/= (/) ) ) |
| 62 | 51 61 | imbi12d | |- ( f = ( _I |` ( s \ { (/) } ) ) -> ( ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) <-> ( ( Fun ( _I |` ( s \ { (/) } ) ) /\ -. (/) e. ( s \ { (/) } ) ) -> X_ x e. ( s \ { (/) } ) x =/= (/) ) ) ) |
| 63 | 43 62 | spcv | |- ( A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) -> ( ( Fun ( _I |` ( s \ { (/) } ) ) /\ -. (/) e. ( s \ { (/) } ) ) -> X_ x e. ( s \ { (/) } ) x =/= (/) ) ) |
| 64 | 38 39 63 | mp2ani | |- ( A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) -> X_ x e. ( s \ { (/) } ) x =/= (/) ) |
| 65 | n0 | |- ( X_ x e. ( s \ { (/) } ) x =/= (/) <-> E. g g e. X_ x e. ( s \ { (/) } ) x ) |
|
| 66 | vex | |- g e. _V |
|
| 67 | 66 | elixp | |- ( g e. X_ x e. ( s \ { (/) } ) x <-> ( g Fn ( s \ { (/) } ) /\ A. x e. ( s \ { (/) } ) ( g ` x ) e. x ) ) |
| 68 | eldifsn | |- ( x e. ( s \ { (/) } ) <-> ( x e. s /\ x =/= (/) ) ) |
|
| 69 | 68 | imbi1i | |- ( ( x e. ( s \ { (/) } ) -> ( g ` x ) e. x ) <-> ( ( x e. s /\ x =/= (/) ) -> ( g ` x ) e. x ) ) |
| 70 | impexp | |- ( ( ( x e. s /\ x =/= (/) ) -> ( g ` x ) e. x ) <-> ( x e. s -> ( x =/= (/) -> ( g ` x ) e. x ) ) ) |
|
| 71 | 69 70 | bitri | |- ( ( x e. ( s \ { (/) } ) -> ( g ` x ) e. x ) <-> ( x e. s -> ( x =/= (/) -> ( g ` x ) e. x ) ) ) |
| 72 | 71 | ralbii2 | |- ( A. x e. ( s \ { (/) } ) ( g ` x ) e. x <-> A. x e. s ( x =/= (/) -> ( g ` x ) e. x ) ) |
| 73 | neeq1 | |- ( x = t -> ( x =/= (/) <-> t =/= (/) ) ) |
|
| 74 | fveq2 | |- ( x = t -> ( g ` x ) = ( g ` t ) ) |
|
| 75 | id | |- ( x = t -> x = t ) |
|
| 76 | 74 75 | eleq12d | |- ( x = t -> ( ( g ` x ) e. x <-> ( g ` t ) e. t ) ) |
| 77 | 73 76 | imbi12d | |- ( x = t -> ( ( x =/= (/) -> ( g ` x ) e. x ) <-> ( t =/= (/) -> ( g ` t ) e. t ) ) ) |
| 78 | 77 | cbvralvw | |- ( A. x e. s ( x =/= (/) -> ( g ` x ) e. x ) <-> A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
| 79 | 72 78 | bitri | |- ( A. x e. ( s \ { (/) } ) ( g ` x ) e. x <-> A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
| 80 | 79 | biimpi | |- ( A. x e. ( s \ { (/) } ) ( g ` x ) e. x -> A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
| 81 | 67 80 | simplbiim | |- ( g e. X_ x e. ( s \ { (/) } ) x -> A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
| 82 | 81 | eximi | |- ( E. g g e. X_ x e. ( s \ { (/) } ) x -> E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
| 83 | 65 82 | sylbi | |- ( X_ x e. ( s \ { (/) } ) x =/= (/) -> E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
| 84 | 64 83 | syl | |- ( A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) -> E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
| 85 | 84 | alrimiv | |- ( A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) -> A. s E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
| 86 | 35 85 | impbii | |- ( A. s E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) <-> A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |
| 87 | 1 86 | bitri | |- ( CHOICE <-> A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |