This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac5 . (Contributed by NM, 11-Apr-2004) Avoid ax-11 . (Revised by BTernaryTau, 23-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfac5lem.1 | ⊢ 𝐴 = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } | |
| dfac5lem.2 | ⊢ ( 𝜑 ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) | ||
| Assertion | dfac5lem4 | ⊢ ( 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac5lem.1 | ⊢ 𝐴 = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } | |
| 2 | dfac5lem.2 | ⊢ ( 𝜑 ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) | |
| 3 | vex | ⊢ 𝑧 ∈ V | |
| 4 | neeq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 ≠ ∅ ↔ 𝑧 ≠ ∅ ) ) | |
| 5 | eqeq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) | |
| 6 | 5 | rexbidv | ⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) |
| 7 | 4 6 | anbi12d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) ↔ ( 𝑧 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) ) |
| 8 | 3 7 | elab | ⊢ ( 𝑧 ∈ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ↔ ( 𝑧 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) |
| 9 | 8 | simplbi | ⊢ ( 𝑧 ∈ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } → 𝑧 ≠ ∅ ) |
| 10 | 9 1 | eleq2s | ⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ≠ ∅ ) |
| 11 | 10 | rgen | ⊢ ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ |
| 12 | df-an | ⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) ↔ ¬ ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) ) | |
| 13 | 3 7 1 | elab2 | ⊢ ( 𝑧 ∈ 𝐴 ↔ ( 𝑧 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) |
| 14 | 13 | simprbi | ⊢ ( 𝑧 ∈ 𝐴 → ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) |
| 15 | vex | ⊢ 𝑤 ∈ V | |
| 16 | neeq1 | ⊢ ( 𝑢 = 𝑤 → ( 𝑢 ≠ ∅ ↔ 𝑤 ≠ ∅ ) ) | |
| 17 | eqeq1 | ⊢ ( 𝑢 = 𝑤 → ( 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) | |
| 18 | 17 | rexbidv | ⊢ ( 𝑢 = 𝑤 → ( ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) |
| 19 | 16 18 | anbi12d | ⊢ ( 𝑢 = 𝑤 → ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) ↔ ( 𝑤 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) ) |
| 20 | 15 19 1 | elab2 | ⊢ ( 𝑤 ∈ 𝐴 ↔ ( 𝑤 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) |
| 21 | 20 | simprbi | ⊢ ( 𝑤 ∈ 𝐴 → ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ) |
| 22 | sneq | ⊢ ( 𝑡 = 𝑔 → { 𝑡 } = { 𝑔 } ) | |
| 23 | 22 | xpeq1d | ⊢ ( 𝑡 = 𝑔 → ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑡 ) ) |
| 24 | xpeq2 | ⊢ ( 𝑡 = 𝑔 → ( { 𝑔 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) | |
| 25 | 23 24 | eqtrd | ⊢ ( 𝑡 = 𝑔 → ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) |
| 26 | 25 | eqeq2d | ⊢ ( 𝑡 = 𝑔 → ( 𝑤 = ( { 𝑡 } × 𝑡 ) ↔ 𝑤 = ( { 𝑔 } × 𝑔 ) ) ) |
| 27 | 26 | cbvrexvw | ⊢ ( ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑔 ∈ ℎ 𝑤 = ( { 𝑔 } × 𝑔 ) ) |
| 28 | 21 27 | sylib | ⊢ ( 𝑤 ∈ 𝐴 → ∃ 𝑔 ∈ ℎ 𝑤 = ( { 𝑔 } × 𝑔 ) ) |
| 29 | eleq2 | ⊢ ( 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ( { 𝑡 } × 𝑡 ) ) ) | |
| 30 | elxp | ⊢ ( 𝑥 ∈ ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑢 ∃ 𝑣 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) | |
| 31 | opeq1 | ⊢ ( 𝑢 = 𝑠 → 〈 𝑢 , 𝑣 〉 = 〈 𝑠 , 𝑣 〉 ) | |
| 32 | 31 | eqeq2d | ⊢ ( 𝑢 = 𝑠 → ( 𝑥 = 〈 𝑢 , 𝑣 〉 ↔ 𝑥 = 〈 𝑠 , 𝑣 〉 ) ) |
| 33 | eleq1w | ⊢ ( 𝑢 = 𝑠 → ( 𝑢 ∈ { 𝑡 } ↔ 𝑠 ∈ { 𝑡 } ) ) | |
| 34 | 33 | anbi1d | ⊢ ( 𝑢 = 𝑠 → ( ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ↔ ( 𝑠 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) |
| 35 | 32 34 | anbi12d | ⊢ ( 𝑢 = 𝑠 → ( ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ↔ ( 𝑥 = 〈 𝑠 , 𝑣 〉 ∧ ( 𝑠 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) ) |
| 36 | 35 | excomimw | ⊢ ( ∃ 𝑢 ∃ 𝑣 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) → ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) |
| 37 | 30 36 | sylbi | ⊢ ( 𝑥 ∈ ( { 𝑡 } × 𝑡 ) → ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) |
| 38 | 29 37 | biimtrdi | ⊢ ( 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑥 ∈ 𝑧 → ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) ) |
| 39 | eleq2 | ⊢ ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ ( { 𝑔 } × 𝑔 ) ) ) | |
| 40 | elxp | ⊢ ( 𝑥 ∈ ( { 𝑔 } × 𝑔 ) ↔ ∃ 𝑢 ∃ 𝑦 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) | |
| 41 | opeq1 | ⊢ ( 𝑢 = 𝑠 → 〈 𝑢 , 𝑦 〉 = 〈 𝑠 , 𝑦 〉 ) | |
| 42 | 41 | eqeq2d | ⊢ ( 𝑢 = 𝑠 → ( 𝑥 = 〈 𝑢 , 𝑦 〉 ↔ 𝑥 = 〈 𝑠 , 𝑦 〉 ) ) |
| 43 | eleq1w | ⊢ ( 𝑢 = 𝑠 → ( 𝑢 ∈ { 𝑔 } ↔ 𝑠 ∈ { 𝑔 } ) ) | |
| 44 | 43 | anbi1d | ⊢ ( 𝑢 = 𝑠 → ( ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ↔ ( 𝑠 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) |
| 45 | 42 44 | anbi12d | ⊢ ( 𝑢 = 𝑠 → ( ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ↔ ( 𝑥 = 〈 𝑠 , 𝑦 〉 ∧ ( 𝑠 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) |
| 46 | 45 | excomimw | ⊢ ( ∃ 𝑢 ∃ 𝑦 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) → ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) |
| 47 | 40 46 | sylbi | ⊢ ( 𝑥 ∈ ( { 𝑔 } × 𝑔 ) → ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) |
| 48 | 39 47 | biimtrdi | ⊢ ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( 𝑥 ∈ 𝑤 → ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) |
| 49 | 38 48 | im2anan9 | ⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → ( ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) ) |
| 50 | exdistrv | ⊢ ( ∃ 𝑣 ∃ 𝑦 ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ↔ ( ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) | |
| 51 | 49 50 | imbitrrdi | ⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → ∃ 𝑣 ∃ 𝑦 ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) ) |
| 52 | velsn | ⊢ ( 𝑢 ∈ { 𝑡 } ↔ 𝑢 = 𝑡 ) | |
| 53 | opeq1 | ⊢ ( 𝑢 = 𝑡 → 〈 𝑢 , 𝑣 〉 = 〈 𝑡 , 𝑣 〉 ) | |
| 54 | 53 | eqeq2d | ⊢ ( 𝑢 = 𝑡 → ( 𝑥 = 〈 𝑢 , 𝑣 〉 ↔ 𝑥 = 〈 𝑡 , 𝑣 〉 ) ) |
| 55 | 54 | biimpac | ⊢ ( ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ 𝑢 = 𝑡 ) → 𝑥 = 〈 𝑡 , 𝑣 〉 ) |
| 56 | 52 55 | sylan2b | ⊢ ( ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ 𝑢 ∈ { 𝑡 } ) → 𝑥 = 〈 𝑡 , 𝑣 〉 ) |
| 57 | 56 | adantrr | ⊢ ( ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) → 𝑥 = 〈 𝑡 , 𝑣 〉 ) |
| 58 | 57 | exlimiv | ⊢ ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) → 𝑥 = 〈 𝑡 , 𝑣 〉 ) |
| 59 | velsn | ⊢ ( 𝑢 ∈ { 𝑔 } ↔ 𝑢 = 𝑔 ) | |
| 60 | opeq1 | ⊢ ( 𝑢 = 𝑔 → 〈 𝑢 , 𝑦 〉 = 〈 𝑔 , 𝑦 〉 ) | |
| 61 | 60 | eqeq2d | ⊢ ( 𝑢 = 𝑔 → ( 𝑥 = 〈 𝑢 , 𝑦 〉 ↔ 𝑥 = 〈 𝑔 , 𝑦 〉 ) ) |
| 62 | 61 | biimpac | ⊢ ( ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ 𝑢 = 𝑔 ) → 𝑥 = 〈 𝑔 , 𝑦 〉 ) |
| 63 | 59 62 | sylan2b | ⊢ ( ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ 𝑢 ∈ { 𝑔 } ) → 𝑥 = 〈 𝑔 , 𝑦 〉 ) |
| 64 | 63 | adantrr | ⊢ ( ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) → 𝑥 = 〈 𝑔 , 𝑦 〉 ) |
| 65 | 64 | exlimiv | ⊢ ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) → 𝑥 = 〈 𝑔 , 𝑦 〉 ) |
| 66 | 58 65 | sylan9req | ⊢ ( ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) → 〈 𝑡 , 𝑣 〉 = 〈 𝑔 , 𝑦 〉 ) |
| 67 | vex | ⊢ 𝑡 ∈ V | |
| 68 | vex | ⊢ 𝑣 ∈ V | |
| 69 | 67 68 | opth1 | ⊢ ( 〈 𝑡 , 𝑣 〉 = 〈 𝑔 , 𝑦 〉 → 𝑡 = 𝑔 ) |
| 70 | 66 69 | syl | ⊢ ( ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) → 𝑡 = 𝑔 ) |
| 71 | 70 | exlimivv | ⊢ ( ∃ 𝑣 ∃ 𝑦 ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) → 𝑡 = 𝑔 ) |
| 72 | 51 71 | syl6 | ⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑡 = 𝑔 ) ) |
| 73 | 72 25 | syl6 | ⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) ) |
| 74 | eqeq12 | ⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( 𝑧 = 𝑤 ↔ ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) ) | |
| 75 | 73 74 | sylibrd | ⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 76 | 75 | ex | ⊢ ( 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 77 | 76 | rexlimivw | ⊢ ( ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 78 | 77 | rexlimdvw | ⊢ ( ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) → ( ∃ 𝑔 ∈ ℎ 𝑤 = ( { 𝑔 } × 𝑔 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 79 | 78 | imp | ⊢ ( ( ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ ∃ 𝑔 ∈ ℎ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 80 | 14 28 79 | syl2an | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 81 | 12 80 | biimtrrid | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ¬ ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 82 | 81 | necon1ad | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ≠ 𝑤 → ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) ) ) |
| 83 | 82 | alrimdv | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ≠ 𝑤 → ∀ 𝑥 ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) ) ) |
| 84 | disj1 | ⊢ ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) ) | |
| 85 | 83 84 | imbitrrdi | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 86 | 85 | rgen2 | ⊢ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) |
| 87 | vex | ⊢ ℎ ∈ V | |
| 88 | vuniex | ⊢ ∪ ℎ ∈ V | |
| 89 | 87 88 | xpex | ⊢ ( ℎ × ∪ ℎ ) ∈ V |
| 90 | 89 | pwex | ⊢ 𝒫 ( ℎ × ∪ ℎ ) ∈ V |
| 91 | snssi | ⊢ ( 𝑡 ∈ ℎ → { 𝑡 } ⊆ ℎ ) | |
| 92 | elssuni | ⊢ ( 𝑡 ∈ ℎ → 𝑡 ⊆ ∪ ℎ ) | |
| 93 | xpss12 | ⊢ ( ( { 𝑡 } ⊆ ℎ ∧ 𝑡 ⊆ ∪ ℎ ) → ( { 𝑡 } × 𝑡 ) ⊆ ( ℎ × ∪ ℎ ) ) | |
| 94 | 91 92 93 | syl2anc | ⊢ ( 𝑡 ∈ ℎ → ( { 𝑡 } × 𝑡 ) ⊆ ( ℎ × ∪ ℎ ) ) |
| 95 | vsnex | ⊢ { 𝑡 } ∈ V | |
| 96 | 95 67 | xpex | ⊢ ( { 𝑡 } × 𝑡 ) ∈ V |
| 97 | 96 | elpw | ⊢ ( ( { 𝑡 } × 𝑡 ) ∈ 𝒫 ( ℎ × ∪ ℎ ) ↔ ( { 𝑡 } × 𝑡 ) ⊆ ( ℎ × ∪ ℎ ) ) |
| 98 | 94 97 | sylibr | ⊢ ( 𝑡 ∈ ℎ → ( { 𝑡 } × 𝑡 ) ∈ 𝒫 ( ℎ × ∪ ℎ ) ) |
| 99 | eleq1 | ⊢ ( 𝑢 = ( { 𝑡 } × 𝑡 ) → ( 𝑢 ∈ 𝒫 ( ℎ × ∪ ℎ ) ↔ ( { 𝑡 } × 𝑡 ) ∈ 𝒫 ( ℎ × ∪ ℎ ) ) ) | |
| 100 | 98 99 | syl5ibrcom | ⊢ ( 𝑡 ∈ ℎ → ( 𝑢 = ( { 𝑡 } × 𝑡 ) → 𝑢 ∈ 𝒫 ( ℎ × ∪ ℎ ) ) ) |
| 101 | 100 | rexlimiv | ⊢ ( ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) → 𝑢 ∈ 𝒫 ( ℎ × ∪ ℎ ) ) |
| 102 | 101 | adantl | ⊢ ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) → 𝑢 ∈ 𝒫 ( ℎ × ∪ ℎ ) ) |
| 103 | 102 | abssi | ⊢ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ⊆ 𝒫 ( ℎ × ∪ ℎ ) |
| 104 | 90 103 | ssexi | ⊢ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ∈ V |
| 105 | 1 104 | eqeltri | ⊢ 𝐴 ∈ V |
| 106 | raleq | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ) ) | |
| 107 | raleq | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) | |
| 108 | 107 | raleqbi1dv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 109 | 106 108 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ↔ ( ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) ) |
| 110 | raleq | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) | |
| 111 | 110 | exbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 112 | 109 111 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( ( ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 113 | 105 112 | spcv | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ( ( ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 114 | 2 113 | sylbi | ⊢ ( 𝜑 → ( ( ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 115 | 11 86 114 | mp2ani | ⊢ ( 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |