This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funfvima3 | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐹 ⊆ 𝐺 → ( 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ) ) | |
| 2 | funfvop | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) | |
| 3 | 1 2 | impel | ⊢ ( ( 𝐹 ⊆ 𝐺 ∧ ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ) |
| 4 | sneq | ⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) | |
| 5 | 4 | imaeq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝐺 “ { 𝑥 } ) = ( 𝐺 “ { 𝐴 } ) ) |
| 6 | 5 | eleq2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝑥 } ) ↔ ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ) ) |
| 7 | opeq1 | ⊢ ( 𝑥 = 𝐴 → 〈 𝑥 , ( 𝐹 ‘ 𝐴 ) 〉 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( 〈 𝑥 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ) ) |
| 9 | vex | ⊢ 𝑥 ∈ V | |
| 10 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 11 | 9 10 | elimasn | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝑥 } ) ↔ 〈 𝑥 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ) |
| 12 | 6 8 11 | vtoclbg | ⊢ ( 𝐴 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ) ) |
| 13 | 12 | ad2antll | ⊢ ( ( 𝐹 ⊆ 𝐺 ∧ ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐺 ) ) |
| 14 | 3 13 | mpbird | ⊢ ( ( 𝐹 ⊆ 𝐺 ∧ ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ) |
| 15 | 14 | exp32 | ⊢ ( 𝐹 ⊆ 𝐺 → ( Fun 𝐹 → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ) ) ) |
| 16 | 15 | impcom | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐺 “ { 𝐴 } ) ) ) |