This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. This version of dfac12 does not assume the Axiom of Regularity. (Contributed by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac12r | ⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∪ ( 𝑅1 “ On ) ⊆ dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankwflemb | ⊢ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑧 ∈ On 𝑦 ∈ ( 𝑅1 ‘ suc 𝑧 ) ) | |
| 2 | harcl | ⊢ ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ∈ On | |
| 3 | pweq | ⊢ ( 𝑥 = ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) → 𝒫 𝑥 = 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) → ( 𝒫 𝑥 ∈ dom card ↔ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ∈ dom card ) ) |
| 5 | 4 | rspcv | ⊢ ( ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ∈ On → ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ∈ dom card ) ) |
| 6 | 2 5 | ax-mp | ⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ∈ dom card ) |
| 7 | cardid2 | ⊢ ( 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ∈ dom card → ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ≈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) | |
| 8 | ensym | ⊢ ( ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ≈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) → 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ≈ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ) | |
| 9 | bren | ⊢ ( 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ≈ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ↔ ∃ 𝑓 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ) | |
| 10 | simpr | ⊢ ( ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ On ) → 𝑧 ∈ On ) | |
| 11 | f1of1 | ⊢ ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) → 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ On ) → 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ) |
| 13 | cardon | ⊢ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ∈ On | |
| 14 | 13 | onssi | ⊢ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ⊆ On |
| 15 | f1ss | ⊢ ( ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ∧ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ⊆ On ) → 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ On ) | |
| 16 | 12 14 15 | sylancl | ⊢ ( ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ On ) → 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ On ) |
| 17 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( rank ‘ 𝑦 ) = ( rank ‘ 𝑏 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑦 = 𝑏 → ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) = ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) ) |
| 19 | suceq | ⊢ ( ( rank ‘ 𝑦 ) = ( rank ‘ 𝑏 ) → suc ( rank ‘ 𝑦 ) = suc ( rank ‘ 𝑏 ) ) | |
| 20 | 17 19 | syl | ⊢ ( 𝑦 = 𝑏 → suc ( rank ‘ 𝑦 ) = suc ( rank ‘ 𝑏 ) ) |
| 21 | 20 | fveq2d | ⊢ ( 𝑦 = 𝑏 → ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) = ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ) |
| 22 | id | ⊢ ( 𝑦 = 𝑏 → 𝑦 = 𝑏 ) | |
| 23 | 21 22 | fveq12d | ⊢ ( 𝑦 = 𝑏 → ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) |
| 24 | 18 23 | oveq12d | ⊢ ( 𝑦 = 𝑏 → ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) = ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ) |
| 25 | imaeq2 | ⊢ ( 𝑦 = 𝑏 → ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) = ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) | |
| 26 | 25 | fveq2d | ⊢ ( 𝑦 = 𝑏 → ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) = ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) ) |
| 27 | 24 26 | ifeq12d | ⊢ ( 𝑦 = 𝑏 → if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) = if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) ) ) |
| 28 | 27 | cbvmptv | ⊢ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) = ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) ) ) |
| 29 | dmeq | ⊢ ( 𝑥 = 𝑎 → dom 𝑥 = dom 𝑎 ) | |
| 30 | 29 | fveq2d | ⊢ ( 𝑥 = 𝑎 → ( 𝑅1 ‘ dom 𝑥 ) = ( 𝑅1 ‘ dom 𝑎 ) ) |
| 31 | 29 | unieqd | ⊢ ( 𝑥 = 𝑎 → ∪ dom 𝑥 = ∪ dom 𝑎 ) |
| 32 | 29 31 | eqeq12d | ⊢ ( 𝑥 = 𝑎 → ( dom 𝑥 = ∪ dom 𝑥 ↔ dom 𝑎 = ∪ dom 𝑎 ) ) |
| 33 | rneq | ⊢ ( 𝑥 = 𝑎 → ran 𝑥 = ran 𝑎 ) | |
| 34 | 33 | unieqd | ⊢ ( 𝑥 = 𝑎 → ∪ ran 𝑥 = ∪ ran 𝑎 ) |
| 35 | 34 | rneqd | ⊢ ( 𝑥 = 𝑎 → ran ∪ ran 𝑥 = ran ∪ ran 𝑎 ) |
| 36 | 35 | unieqd | ⊢ ( 𝑥 = 𝑎 → ∪ ran ∪ ran 𝑥 = ∪ ran ∪ ran 𝑎 ) |
| 37 | suceq | ⊢ ( ∪ ran ∪ ran 𝑥 = ∪ ran ∪ ran 𝑎 → suc ∪ ran ∪ ran 𝑥 = suc ∪ ran ∪ ran 𝑎 ) | |
| 38 | 36 37 | syl | ⊢ ( 𝑥 = 𝑎 → suc ∪ ran ∪ ran 𝑥 = suc ∪ ran ∪ ran 𝑎 ) |
| 39 | 38 | oveq1d | ⊢ ( 𝑥 = 𝑎 → ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) = ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) ) |
| 40 | fveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) = ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ) | |
| 41 | 40 | fveq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) = ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) |
| 42 | 39 41 | oveq12d | ⊢ ( 𝑥 = 𝑎 → ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) = ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ) |
| 43 | id | ⊢ ( 𝑥 = 𝑎 → 𝑥 = 𝑎 ) | |
| 44 | 43 31 | fveq12d | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ‘ ∪ dom 𝑥 ) = ( 𝑎 ‘ ∪ dom 𝑎 ) ) |
| 45 | 44 | rneqd | ⊢ ( 𝑥 = 𝑎 → ran ( 𝑥 ‘ ∪ dom 𝑥 ) = ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) |
| 46 | oieq2 | ⊢ ( ran ( 𝑥 ‘ ∪ dom 𝑥 ) = ran ( 𝑎 ‘ ∪ dom 𝑎 ) → OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) = OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ) | |
| 47 | 45 46 | syl | ⊢ ( 𝑥 = 𝑎 → OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) = OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ) |
| 48 | 47 | cnveqd | ⊢ ( 𝑥 = 𝑎 → ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) = ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ) |
| 49 | 48 44 | coeq12d | ⊢ ( 𝑥 = 𝑎 → ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) = ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) ) |
| 50 | 49 | imaeq1d | ⊢ ( 𝑥 = 𝑎 → ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) = ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) |
| 51 | 50 | fveq2d | ⊢ ( 𝑥 = 𝑎 → ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) = ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) |
| 52 | 32 42 51 | ifbieq12d | ⊢ ( 𝑥 = 𝑎 → if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) ) = if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) |
| 53 | 30 52 | mpteq12dv | ⊢ ( 𝑥 = 𝑎 → ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) ) ) = ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑎 ) ↦ if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) ) |
| 54 | 28 53 | eqtrid | ⊢ ( 𝑥 = 𝑎 → ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) = ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑎 ) ↦ if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) ) |
| 55 | 54 | cbvmptv | ⊢ ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) = ( 𝑎 ∈ V ↦ ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑎 ) ↦ if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) ) |
| 56 | recseq | ⊢ ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) = ( 𝑎 ∈ V ↦ ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑎 ) ↦ if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) ) → recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ) = recs ( ( 𝑎 ∈ V ↦ ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑎 ) ↦ if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) ) ) ) | |
| 57 | 55 56 | ax-mp | ⊢ recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ) = recs ( ( 𝑎 ∈ V ↦ ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑎 ) ↦ if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) ) ) |
| 58 | 10 16 57 | dfac12lem3 | ⊢ ( ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ On ) → ( 𝑅1 ‘ 𝑧 ) ∈ dom card ) |
| 59 | 58 | ex | ⊢ ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) → ( 𝑧 ∈ On → ( 𝑅1 ‘ 𝑧 ) ∈ dom card ) ) |
| 60 | 59 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) → ( 𝑧 ∈ On → ( 𝑅1 ‘ 𝑧 ) ∈ dom card ) ) |
| 61 | 9 60 | sylbi | ⊢ ( 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ≈ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) → ( 𝑧 ∈ On → ( 𝑅1 ‘ 𝑧 ) ∈ dom card ) ) |
| 62 | 6 7 8 61 | 4syl | ⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card → ( 𝑧 ∈ On → ( 𝑅1 ‘ 𝑧 ) ∈ dom card ) ) |
| 63 | 62 | imp | ⊢ ( ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On ) → ( 𝑅1 ‘ 𝑧 ) ∈ dom card ) |
| 64 | r1suc | ⊢ ( 𝑧 ∈ On → ( 𝑅1 ‘ suc 𝑧 ) = 𝒫 ( 𝑅1 ‘ 𝑧 ) ) | |
| 65 | 64 | adantl | ⊢ ( ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On ) → ( 𝑅1 ‘ suc 𝑧 ) = 𝒫 ( 𝑅1 ‘ 𝑧 ) ) |
| 66 | 65 | eleq2d | ⊢ ( ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On ) → ( 𝑦 ∈ ( 𝑅1 ‘ suc 𝑧 ) ↔ 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑧 ) ) ) |
| 67 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑧 ) → 𝑦 ⊆ ( 𝑅1 ‘ 𝑧 ) ) | |
| 68 | 66 67 | biimtrdi | ⊢ ( ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On ) → ( 𝑦 ∈ ( 𝑅1 ‘ suc 𝑧 ) → 𝑦 ⊆ ( 𝑅1 ‘ 𝑧 ) ) ) |
| 69 | ssnum | ⊢ ( ( ( 𝑅1 ‘ 𝑧 ) ∈ dom card ∧ 𝑦 ⊆ ( 𝑅1 ‘ 𝑧 ) ) → 𝑦 ∈ dom card ) | |
| 70 | 63 68 69 | syl6an | ⊢ ( ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On ) → ( 𝑦 ∈ ( 𝑅1 ‘ suc 𝑧 ) → 𝑦 ∈ dom card ) ) |
| 71 | 70 | rexlimdva | ⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card → ( ∃ 𝑧 ∈ On 𝑦 ∈ ( 𝑅1 ‘ suc 𝑧 ) → 𝑦 ∈ dom card ) ) |
| 72 | 1 71 | biimtrid | ⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) → 𝑦 ∈ dom card ) ) |
| 73 | 72 | ssrdv | ⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card → ∪ ( 𝑅1 “ On ) ⊆ dom card ) |
| 74 | onwf | ⊢ On ⊆ ∪ ( 𝑅1 “ On ) | |
| 75 | 74 | sseli | ⊢ ( 𝑥 ∈ On → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 76 | pwwf | ⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 77 | 75 76 | sylib | ⊢ ( 𝑥 ∈ On → 𝒫 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 78 | ssel | ⊢ ( ∪ ( 𝑅1 “ On ) ⊆ dom card → ( 𝒫 𝑥 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝑥 ∈ dom card ) ) | |
| 79 | 77 78 | syl5 | ⊢ ( ∪ ( 𝑅1 “ On ) ⊆ dom card → ( 𝑥 ∈ On → 𝒫 𝑥 ∈ dom card ) ) |
| 80 | 79 | ralrimiv | ⊢ ( ∪ ( 𝑅1 “ On ) ⊆ dom card → ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ) |
| 81 | 73 80 | impbii | ⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∪ ( 𝑅1 “ On ) ⊆ dom card ) |