This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Dedekind cut theorem. This theorem, which may be used to replace ax-pre-sup with appropriate adjustments, states that, if A completely preceeds B , then there is some number separating the two of them. (Contributed by Scott Fenton, 13-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dedekind | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑥 ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) | |
| 2 | nfv | ⊢ Ⅎ 𝑥 ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) | |
| 3 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 | |
| 4 | 1 2 3 | nf3an | ⊢ Ⅎ 𝑥 ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) |
| 5 | nfv | ⊢ Ⅎ 𝑥 𝑧 ∈ ℝ | |
| 6 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 | |
| 7 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) | |
| 8 | 6 7 | nfan | ⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) |
| 9 | 5 8 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) |
| 10 | 4 9 | nfan | ⊢ Ⅎ 𝑥 ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) |
| 11 | nfv | ⊢ Ⅎ 𝑦 ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) | |
| 12 | nfv | ⊢ Ⅎ 𝑦 ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) | |
| 13 | nfra2w | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 | |
| 14 | 11 12 13 | nf3an | ⊢ Ⅎ 𝑦 ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) |
| 15 | nfv | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) | |
| 16 | 14 15 | nfan | ⊢ Ⅎ 𝑦 ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) |
| 17 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 | |
| 18 | simpl2l | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → 𝐴 ⊆ ℝ ) | |
| 19 | 18 | sselda | ⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 20 | simplrl | ⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) | |
| 21 | simprrl | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ) | |
| 22 | 21 | r19.21bi | ⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑧 < 𝑥 ) |
| 23 | 19 20 22 | nltled | ⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ 𝑧 ) |
| 24 | 23 | ex | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ( 𝑥 ∈ 𝐴 → 𝑥 ≤ 𝑧 ) ) |
| 25 | simprll | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑧 ∈ ℝ ) | |
| 26 | simp2r | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → 𝐵 ⊆ ℝ ) | |
| 27 | simpr | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 28 | ssel2 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℝ ) | |
| 29 | 26 27 28 | syl2an | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 30 | simpl3 | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) | |
| 31 | simp2 | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ) | |
| 32 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ( 𝑦 ∈ 𝐵 → 𝑥 < 𝑦 ) ) | |
| 33 | 32 | com12 | ⊢ ( 𝑦 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → 𝑥 < 𝑦 ) ) |
| 34 | 33 | adantl | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → 𝑥 < 𝑦 ) ) |
| 35 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) | |
| 36 | 35 | adantlr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 37 | simplr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ ℝ ) | |
| 38 | 37 | sselda | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℝ ) |
| 39 | ltnsym | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥 ) ) | |
| 40 | 36 38 39 | syl2an2r | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥 ) ) |
| 41 | 34 40 | syld | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥 ) ) |
| 42 | 41 | an32s | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥 ) ) |
| 43 | 42 | ralimdva | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 < 𝑥 ) ) |
| 44 | 31 27 43 | syl2an | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 < 𝑥 ) ) |
| 45 | 30 44 | mpd | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 < 𝑥 ) |
| 46 | breq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑦 < 𝑥 ↔ 𝑦 < 𝑤 ) ) | |
| 47 | 46 | notbid | ⊢ ( 𝑥 = 𝑤 → ( ¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 𝑤 ) ) |
| 48 | 47 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ∀ 𝑤 ∈ 𝐴 ¬ 𝑦 < 𝑤 ) |
| 49 | 45 48 | sylib | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑤 ∈ 𝐴 ¬ 𝑦 < 𝑤 ) |
| 50 | ralnex | ⊢ ( ∀ 𝑤 ∈ 𝐴 ¬ 𝑦 < 𝑤 ↔ ¬ ∃ 𝑤 ∈ 𝐴 𝑦 < 𝑤 ) | |
| 51 | 49 50 | sylib | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ¬ ∃ 𝑤 ∈ 𝐴 𝑦 < 𝑤 ) |
| 52 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 < 𝑧 ↔ 𝑦 < 𝑧 ) ) | |
| 53 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 < 𝑤 ↔ 𝑦 < 𝑤 ) ) | |
| 54 | 53 | rexbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ↔ ∃ 𝑤 ∈ 𝐴 𝑦 < 𝑤 ) ) |
| 55 | 52 54 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ↔ ( 𝑦 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑦 < 𝑤 ) ) ) |
| 56 | simplrr | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) | |
| 57 | 56 | adantl | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) |
| 58 | 55 57 29 | rspcdva | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑦 < 𝑤 ) ) |
| 59 | 51 58 | mtod | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ¬ 𝑦 < 𝑧 ) |
| 60 | 25 29 59 | nltled | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑧 ≤ 𝑦 ) |
| 61 | 60 | expr | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ( 𝑦 ∈ 𝐵 → 𝑧 ≤ 𝑦 ) ) |
| 62 | 24 61 | anim12d | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 63 | 62 | expd | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) ) |
| 64 | 16 17 63 | ralrimd | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 65 | 10 64 | ralrimi | ⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 66 | simp2l | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → 𝐴 ⊆ ℝ ) | |
| 67 | simp1l | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → 𝐴 ≠ ∅ ) | |
| 68 | simp1r | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → 𝐵 ≠ ∅ ) | |
| 69 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐵 ) | |
| 70 | 68 69 | sylib | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 𝑧 ∈ 𝐵 ) |
| 71 | 26 | sseld | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ℝ ) ) |
| 72 | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑦 ) | |
| 73 | breq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 < 𝑦 ↔ 𝑥 < 𝑧 ) ) | |
| 74 | 73 | ralbidv | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) |
| 75 | 74 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑦 → ( 𝑧 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) |
| 76 | 72 75 | sylbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ( 𝑧 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) |
| 77 | 76 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ( 𝑧 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) |
| 78 | 71 77 | jcad | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ( 𝑧 ∈ 𝐵 → ( 𝑧 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) ) |
| 79 | 78 | eximdv | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ( ∃ 𝑧 𝑧 ∈ 𝐵 → ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) ) |
| 80 | 70 79 | mpd | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) |
| 81 | df-rex | ⊢ ( ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) | |
| 82 | 80 81 | sylibr | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) |
| 83 | axsup | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) → ∃ 𝑧 ∈ ℝ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) | |
| 84 | 66 67 82 83 | syl3anc | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) |
| 85 | 65 84 | reximddv | ⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 86 | 85 | 3expib | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 87 | 1re | ⊢ 1 ∈ ℝ | |
| 88 | rzal | ⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 1 ∧ 1 ≤ 𝑦 ) ) | |
| 89 | breq2 | ⊢ ( 𝑧 = 1 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 1 ) ) | |
| 90 | breq1 | ⊢ ( 𝑧 = 1 → ( 𝑧 ≤ 𝑦 ↔ 1 ≤ 𝑦 ) ) | |
| 91 | 89 90 | anbi12d | ⊢ ( 𝑧 = 1 → ( ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ↔ ( 𝑥 ≤ 1 ∧ 1 ≤ 𝑦 ) ) ) |
| 92 | 91 | 2ralbidv | ⊢ ( 𝑧 = 1 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 1 ∧ 1 ≤ 𝑦 ) ) ) |
| 93 | 92 | rspcev | ⊢ ( ( 1 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 1 ∧ 1 ≤ 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 94 | 87 88 93 | sylancr | ⊢ ( 𝐴 = ∅ → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 95 | 94 | a1d | ⊢ ( 𝐴 = ∅ → ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 96 | rzal | ⊢ ( 𝐵 = ∅ → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 1 ∧ 1 ≤ 𝑦 ) ) | |
| 97 | 96 | ralrimivw | ⊢ ( 𝐵 = ∅ → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 1 ∧ 1 ≤ 𝑦 ) ) |
| 98 | 87 97 93 | sylancr | ⊢ ( 𝐵 = ∅ → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 99 | 98 | a1d | ⊢ ( 𝐵 = ∅ → ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 100 | 86 95 99 | pm2.61iine | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 101 | 100 | 3impa | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |