This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dedekindle | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ) → 𝐴 ⊆ ℝ ) | |
| 2 | simpr2 | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ) → 𝐵 ⊆ ℝ ) | |
| 3 | simp1 | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| 4 | simpl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) | |
| 5 | disjel | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ 𝐵 ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ¬ 𝑥 ∈ 𝐵 ) |
| 7 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 8 | 7 | biimpcd | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝑦 = 𝑥 → 𝑥 ∈ 𝐵 ) ) |
| 9 | 8 | necon3bd | ⊢ ( 𝑦 ∈ 𝐵 → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 ≠ 𝑥 ) ) |
| 10 | 9 | ad2antll | ⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 ≠ 𝑥 ) ) |
| 11 | 6 10 | mpd | ⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ≠ 𝑥 ) |
| 12 | simp2 | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) | |
| 13 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) | |
| 14 | 12 4 13 | syl2an | ⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 15 | simp3 | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → 𝐵 ⊆ ℝ ) | |
| 16 | simpr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 17 | ssel2 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℝ ) | |
| 18 | 15 16 17 | syl2an | ⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 19 | 14 18 | ltlend | ⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 < 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥 ) ) ) |
| 20 | 19 | biimprd | ⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥 ) → 𝑥 < 𝑦 ) ) |
| 21 | 11 20 | mpan2d | ⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≤ 𝑦 → 𝑥 < 𝑦 ) ) |
| 22 | 21 | ralimdvva | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ) |
| 23 | 22 | 3exp | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 ⊆ ℝ → ( 𝐵 ⊆ ℝ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ) ) ) |
| 24 | 23 | 3imp2 | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) |
| 25 | dedekind | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) | |
| 26 | 1 2 24 25 | syl3anc | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 27 | 26 | ex | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 28 | n0 | ⊢ ( ( 𝐴 ∩ 𝐵 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) | |
| 29 | simp1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → 𝐴 ⊆ ℝ ) | |
| 30 | elinel1 | ⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑤 ∈ 𝐴 ) | |
| 31 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) | |
| 32 | 29 30 31 | syl2an | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → 𝑤 ∈ ℝ ) |
| 33 | nfv | ⊢ Ⅎ 𝑥 𝐴 ⊆ ℝ | |
| 34 | nfv | ⊢ Ⅎ 𝑥 𝐵 ⊆ ℝ | |
| 35 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 | |
| 36 | 33 34 35 | nf3an | ⊢ Ⅎ 𝑥 ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) |
| 37 | nfv | ⊢ Ⅎ 𝑥 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) | |
| 38 | 36 37 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 39 | nfv | ⊢ Ⅎ 𝑦 𝐴 ⊆ ℝ | |
| 40 | nfv | ⊢ Ⅎ 𝑦 𝐵 ⊆ ℝ | |
| 41 | nfra2w | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 | |
| 42 | 39 40 41 | nf3an | ⊢ Ⅎ 𝑦 ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) |
| 43 | nfv | ⊢ Ⅎ 𝑦 ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) | |
| 44 | 42 43 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) |
| 45 | rsp | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ) | |
| 46 | elinel2 | ⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑤 ∈ 𝐵 ) | |
| 47 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑤 ) ) | |
| 48 | 47 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ( 𝑤 ∈ 𝐵 → 𝑥 ≤ 𝑤 ) ) |
| 49 | 46 48 | syl5 | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑥 ≤ 𝑤 ) ) |
| 50 | 45 49 | syl6 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑥 ≤ 𝑤 ) ) ) |
| 51 | 50 | com23 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ≤ 𝑤 ) ) ) |
| 52 | 51 | imp32 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) → 𝑥 ≤ 𝑤 ) |
| 53 | 52 | 3ad2antl3 | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) → 𝑥 ≤ 𝑤 ) |
| 54 | 53 | adantr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ≤ 𝑤 ) |
| 55 | simp3 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) | |
| 56 | 30 | adantr | ⊢ ( ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑤 ∈ 𝐴 ) |
| 57 | breq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦 ) ) | |
| 58 | 57 | ralbidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 𝑤 ≤ 𝑦 ) ) |
| 59 | 58 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝑤 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐵 𝑤 ≤ 𝑦 ) |
| 60 | 55 56 59 | syl2an | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐵 𝑤 ≤ 𝑦 ) |
| 61 | 60 | r19.21bi | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑤 ≤ 𝑦 ) |
| 62 | 54 61 | jca | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) |
| 63 | 62 | ex | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝑦 ∈ 𝐵 → ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) ) |
| 64 | 44 63 | ralrimi | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) |
| 65 | 64 | expr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) ) |
| 66 | 38 65 | ralrimi | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) |
| 67 | breq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑤 ) ) | |
| 68 | breq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦 ) ) | |
| 69 | 67 68 | anbi12d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ↔ ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) ) |
| 70 | 69 | 2ralbidv | ⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) ) |
| 71 | 70 | rspcev | ⊢ ( ( 𝑤 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 72 | 32 66 71 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 73 | 72 | expcom | ⊢ ( 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 74 | 73 | exlimiv | ⊢ ( ∃ 𝑤 𝑤 ∈ ( 𝐴 ∩ 𝐵 ) → ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 75 | 28 74 | sylbi | ⊢ ( ( 𝐴 ∩ 𝐵 ) ≠ ∅ → ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 76 | 27 75 | pm2.61ine | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |