This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality version of pm2.61ii . (Contributed by Scott Fenton, 13-Jun-2013) (Proof shortened by Wolf Lammen, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pm2.61iine.1 | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) → 𝜑 ) | |
| pm2.61iine.2 | ⊢ ( 𝐴 = 𝐶 → 𝜑 ) | ||
| pm2.61iine.3 | ⊢ ( 𝐵 = 𝐷 → 𝜑 ) | ||
| Assertion | pm2.61iine | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61iine.1 | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) → 𝜑 ) | |
| 2 | pm2.61iine.2 | ⊢ ( 𝐴 = 𝐶 → 𝜑 ) | |
| 3 | pm2.61iine.3 | ⊢ ( 𝐵 = 𝐷 → 𝜑 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 = 𝐷 ) → 𝜑 ) |
| 5 | 4 1 | pm2.61dane | ⊢ ( 𝐴 ≠ 𝐶 → 𝜑 ) |
| 6 | 2 5 | pm2.61ine | ⊢ 𝜑 |