This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-sup with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axsup | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-sup | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) | |
| 2 | 1 | 3expia | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) ) |
| 3 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 4 | ltxrlt | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥 ) ) | |
| 5 | 3 4 | sylan | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥 ) ) |
| 6 | 5 | an32s | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥 ) ) |
| 7 | 6 | ralbidva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ) ) |
| 8 | 7 | rexbidva | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥 ) ) |
| 10 | ltxrlt | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦 ) ) | |
| 11 | 10 | ancoms | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦 ) ) |
| 12 | 3 11 | sylan | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦 ) ) |
| 13 | 12 | an32s | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 < 𝑦 ↔ 𝑥 <ℝ 𝑦 ) ) |
| 14 | 13 | notbid | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 <ℝ 𝑦 ) ) |
| 15 | 14 | ralbidva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ) ) |
| 16 | 4 | ancoms | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥 ) ) |
| 17 | 16 | adantll | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ 𝑦 <ℝ 𝑥 ) ) |
| 18 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) | |
| 19 | ltxrlt | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 < 𝑧 ↔ 𝑦 <ℝ 𝑧 ) ) | |
| 20 | 19 | ancoms | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < 𝑧 ↔ 𝑦 <ℝ 𝑧 ) ) |
| 21 | 18 20 | sylan | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < 𝑧 ↔ 𝑦 <ℝ 𝑧 ) ) |
| 22 | 21 | an32s | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 < 𝑧 ↔ 𝑦 <ℝ 𝑧 ) ) |
| 23 | 22 | rexbidva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) |
| 24 | 23 | adantlr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) |
| 25 | 17 24 | imbi12d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) |
| 26 | 25 | ralbidva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) |
| 27 | 15 26 | anbi12d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) ) |
| 28 | 27 | rexbidva | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 <ℝ 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧 ) ) ) ) |
| 30 | 2 9 29 | 3imtr4d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
| 31 | 30 | 3impia | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |