This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cphsqrtcl2 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | sqrt0 | ⊢ ( √ ‘ 0 ) = 0 | |
| 4 | fveq2 | ⊢ ( 𝐴 = 0 → ( √ ‘ 𝐴 ) = ( √ ‘ 0 ) ) | |
| 5 | id | ⊢ ( 𝐴 = 0 → 𝐴 = 0 ) | |
| 6 | 3 4 5 | 3eqtr4a | ⊢ ( 𝐴 = 0 → ( √ ‘ 𝐴 ) = 𝐴 ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 = 0 ) → ( √ ‘ 𝐴 ) = 𝐴 ) |
| 8 | simpl2 | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 = 0 ) → 𝐴 ∈ 𝐾 ) | |
| 9 | 7 8 | eqeltrd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 = 0 ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
| 10 | simpl1 | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 𝑊 ∈ ℂPreHil ) | |
| 11 | 1 2 | cphsubrg | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 13 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 14 | 13 | subrgss | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
| 15 | 12 14 | syl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 𝐾 ⊆ ℂ ) |
| 16 | simpl2 | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ 𝐾 ) | |
| 17 | 1 2 | cphabscl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) ∈ 𝐾 ) |
| 18 | 10 16 17 | syl2anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ 𝐾 ) |
| 19 | 15 16 | sseldd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 20 | 19 | abscld | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 21 | 19 | absge0d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 22 | 1 2 | cphsqrtcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( abs ‘ 𝐴 ) ∈ 𝐾 ∧ ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ 𝐾 ) |
| 23 | 10 18 20 21 22 | syl13anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ 𝐾 ) |
| 24 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 25 | 24 | subrgacl | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( abs ‘ 𝐴 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ 𝐾 ) |
| 26 | 12 18 16 25 | syl3anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ 𝐾 ) |
| 27 | 1 2 | cphabscl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ 𝐾 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ 𝐾 ) |
| 28 | 10 26 27 | syl2anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ 𝐾 ) |
| 29 | 15 26 | sseldd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ ℂ ) |
| 30 | simpl3 | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ¬ - 𝐴 ∈ ℝ+ ) | |
| 31 | 20 | recnd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 32 | 31 19 | subnegd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) − - 𝐴 ) = ( ( abs ‘ 𝐴 ) + 𝐴 ) ) |
| 33 | 32 | eqeq1d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) − - 𝐴 ) = 0 ↔ ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ) ) |
| 34 | 19 | negcld | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → - 𝐴 ∈ ℂ ) |
| 35 | 31 34 | subeq0ad | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) − - 𝐴 ) = 0 ↔ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 36 | 33 35 | bitr3d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 ↔ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 37 | absrpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) | |
| 38 | 19 37 | sylancom | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 39 | eleq1 | ⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( abs ‘ 𝐴 ) ∈ ℝ+ ↔ - 𝐴 ∈ ℝ+ ) ) | |
| 40 | 38 39 | syl5ibcom | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) = - 𝐴 → - 𝐴 ∈ ℝ+ ) ) |
| 41 | 36 40 | sylbid | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) = 0 → - 𝐴 ∈ ℝ+ ) ) |
| 42 | 41 | necon3bd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ¬ - 𝐴 ∈ ℝ+ → ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) ) |
| 43 | 30 42 | mpd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) |
| 44 | 29 43 | absne0d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ≠ 0 ) |
| 45 | 1 2 | cphdivcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) ∈ 𝐾 ∧ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ∈ 𝐾 ∧ ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ≠ 0 ) ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ 𝐾 ) |
| 46 | 10 26 28 44 45 | syl13anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ 𝐾 ) |
| 47 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 48 | 47 | subrgmcl | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( √ ‘ ( abs ‘ 𝐴 ) ) ∈ 𝐾 ∧ ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ∈ 𝐾 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ 𝐾 ) |
| 49 | 12 23 46 48 | syl3anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ 𝐾 ) |
| 50 | 15 49 | sseldd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ∈ ℂ ) |
| 51 | eqid | ⊢ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) | |
| 52 | 51 | sqreulem | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( abs ‘ 𝐴 ) + 𝐴 ) ≠ 0 ) → ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∧ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ) ) |
| 53 | 19 43 52 | syl2anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∧ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ) ) |
| 54 | 53 | simp1d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ↑ 2 ) = 𝐴 ) |
| 55 | 53 | simp2d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → 0 ≤ ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ) |
| 56 | 53 | simp3d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ) |
| 57 | df-nel | ⊢ ( ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∉ ℝ+ ↔ ¬ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∈ ℝ+ ) | |
| 58 | 56 57 | sylib | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ¬ ( i · ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) ) ∈ ℝ+ ) |
| 59 | 50 19 54 55 58 | eqsqrtd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( ( √ ‘ ( abs ‘ 𝐴 ) ) · ( ( ( abs ‘ 𝐴 ) + 𝐴 ) / ( abs ‘ ( ( abs ‘ 𝐴 ) + 𝐴 ) ) ) ) = ( √ ‘ 𝐴 ) ) |
| 60 | 59 49 | eqeltrrd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) ∧ 𝐴 ≠ 0 ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
| 61 | 9 60 | pm2.61dane | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |