This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit _i , then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cphsqrtcl3 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝑊 ∈ ℂPreHil ) | |
| 4 | 1 2 | cphsubrg | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 6 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 7 | 6 | subrgss | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
| 8 | 5 7 | syl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐾 ⊆ ℂ ) |
| 9 | simpl3 | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 ∈ 𝐾 ) | |
| 10 | 8 9 | sseldd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 11 | 10 | negnegd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → - - 𝐴 = 𝐴 ) |
| 12 | 11 | fveq2d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ - - 𝐴 ) = ( √ ‘ 𝐴 ) ) |
| 13 | rpre | ⊢ ( - 𝐴 ∈ ℝ+ → - 𝐴 ∈ ℝ ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → - 𝐴 ∈ ℝ ) |
| 15 | rpge0 | ⊢ ( - 𝐴 ∈ ℝ+ → 0 ≤ - 𝐴 ) | |
| 16 | 15 | adantl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 0 ≤ - 𝐴 ) |
| 17 | 14 16 | sqrtnegd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ - - 𝐴 ) = ( i · ( √ ‘ - 𝐴 ) ) ) |
| 18 | 12 17 | eqtr3d | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ 𝐴 ) = ( i · ( √ ‘ - 𝐴 ) ) ) |
| 19 | simpl2 | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → i ∈ 𝐾 ) | |
| 20 | cnfldneg | ⊢ ( 𝐴 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 ) | |
| 21 | 10 20 | syl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 ) |
| 22 | subrgsubg | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) | |
| 23 | 5 22 | syl | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
| 24 | eqid | ⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) | |
| 25 | 24 | subginvcl | ⊢ ( ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 26 | 23 9 25 | syl2anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 27 | 21 26 | eqeltrrd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → - 𝐴 ∈ 𝐾 ) |
| 28 | 1 2 | cphsqrtcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( - 𝐴 ∈ 𝐾 ∧ - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) ) → ( √ ‘ - 𝐴 ) ∈ 𝐾 ) |
| 29 | 3 27 14 16 28 | syl13anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ - 𝐴 ) ∈ 𝐾 ) |
| 30 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 31 | 30 | subrgmcl | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ i ∈ 𝐾 ∧ ( √ ‘ - 𝐴 ) ∈ 𝐾 ) → ( i · ( √ ‘ - 𝐴 ) ) ∈ 𝐾 ) |
| 32 | 5 19 29 31 | syl3anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( i · ( √ ‘ - 𝐴 ) ) ∈ 𝐾 ) |
| 33 | 18 32 | eqeltrd | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
| 34 | 33 | ex | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) → ( - 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ 𝐾 ) ) |
| 35 | 1 2 | cphsqrtcl2 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
| 36 | 35 | 3expia | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( ¬ - 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ 𝐾 ) ) |
| 37 | 36 | 3adant2 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) → ( ¬ - 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ 𝐾 ) ) |
| 38 | 34 37 | pm2.61d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |