This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqsqrtd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| eqsqrtd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| eqsqrtd.3 | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = 𝐵 ) | ||
| eqsqrtd.4 | ⊢ ( 𝜑 → 0 ≤ ( ℜ ‘ 𝐴 ) ) | ||
| eqsqrtd.5 | ⊢ ( 𝜑 → ¬ ( i · 𝐴 ) ∈ ℝ+ ) | ||
| Assertion | eqsqrtd | ⊢ ( 𝜑 → 𝐴 = ( √ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsqrtd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | eqsqrtd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | eqsqrtd.3 | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = 𝐵 ) | |
| 4 | eqsqrtd.4 | ⊢ ( 𝜑 → 0 ≤ ( ℜ ‘ 𝐴 ) ) | |
| 5 | eqsqrtd.5 | ⊢ ( 𝜑 → ¬ ( i · 𝐴 ) ∈ ℝ+ ) | |
| 6 | sqreu | ⊢ ( 𝐵 ∈ ℂ → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) | |
| 7 | reurmo | ⊢ ( ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) | |
| 8 | 2 6 7 | 3syl | ⊢ ( 𝜑 → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
| 9 | df-nel | ⊢ ( ( i · 𝐴 ) ∉ ℝ+ ↔ ¬ ( i · 𝐴 ) ∈ ℝ+ ) | |
| 10 | 5 9 | sylibr | ⊢ ( 𝜑 → ( i · 𝐴 ) ∉ ℝ+ ) |
| 11 | 3 4 10 | 3jca | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ) |
| 12 | sqrtcl | ⊢ ( 𝐵 ∈ ℂ → ( √ ‘ 𝐵 ) ∈ ℂ ) | |
| 13 | 2 12 | syl | ⊢ ( 𝜑 → ( √ ‘ 𝐵 ) ∈ ℂ ) |
| 14 | sqrtthlem | ⊢ ( 𝐵 ∈ ℂ → ( ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐵 ) ) ∧ ( i · ( √ ‘ 𝐵 ) ) ∉ ℝ+ ) ) | |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → ( ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐵 ) ) ∧ ( i · ( √ ‘ 𝐵 ) ) ∉ ℝ+ ) ) |
| 16 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 17 | 16 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ↑ 2 ) = 𝐵 ↔ ( 𝐴 ↑ 2 ) = 𝐵 ) ) |
| 18 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ 𝐴 ) ) | |
| 19 | 18 | breq2d | ⊢ ( 𝑥 = 𝐴 → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ 𝐴 ) ) ) |
| 20 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( i · 𝑥 ) = ( i · 𝐴 ) ) | |
| 21 | neleq1 | ⊢ ( ( i · 𝑥 ) = ( i · 𝐴 ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · 𝐴 ) ∉ ℝ+ ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑥 = 𝐴 → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · 𝐴 ) ∉ ℝ+ ) ) |
| 23 | 17 19 22 | 3anbi123d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( 𝐴 ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ) ) |
| 24 | oveq1 | ⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → ( 𝑥 ↑ 2 ) = ( ( √ ‘ 𝐵 ) ↑ 2 ) ) | |
| 25 | 24 | eqeq1d | ⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → ( ( 𝑥 ↑ 2 ) = 𝐵 ↔ ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ) ) |
| 26 | fveq2 | ⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ ( √ ‘ 𝐵 ) ) ) | |
| 27 | 26 | breq2d | ⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐵 ) ) ) ) |
| 28 | oveq2 | ⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → ( i · 𝑥 ) = ( i · ( √ ‘ 𝐵 ) ) ) | |
| 29 | neleq1 | ⊢ ( ( i · 𝑥 ) = ( i · ( √ ‘ 𝐵 ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( √ ‘ 𝐵 ) ) ∉ ℝ+ ) ) | |
| 30 | 28 29 | syl | ⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( √ ‘ 𝐵 ) ) ∉ ℝ+ ) ) |
| 31 | 25 27 30 | 3anbi123d | ⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → ( ( ( 𝑥 ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐵 ) ) ∧ ( i · ( √ ‘ 𝐵 ) ) ∉ ℝ+ ) ) ) |
| 32 | 23 31 | rmoi | ⊢ ( ( ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ( 𝐴 ∈ ℂ ∧ ( ( 𝐴 ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ∧ ( i · 𝐴 ) ∉ ℝ+ ) ) ∧ ( ( √ ‘ 𝐵 ) ∈ ℂ ∧ ( ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ∧ 0 ≤ ( ℜ ‘ ( √ ‘ 𝐵 ) ) ∧ ( i · ( √ ‘ 𝐵 ) ) ∉ ℝ+ ) ) ) → 𝐴 = ( √ ‘ 𝐵 ) ) |
| 33 | 8 1 11 13 15 32 | syl122anc | ⊢ ( 𝜑 → 𝐴 = ( √ ‘ 𝐵 ) ) |