This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of a subcomplex pre-Hilbert space is closed under the absolute value operation. (Contributed by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cphabscl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | 1 2 | cphsubrg | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 4 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 5 | 4 | subrgss | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
| 6 | 3 5 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ⊆ ℂ ) |
| 7 | 6 | sselda | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ℂ ) |
| 8 | absval | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 10 | simpl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 𝑊 ∈ ℂPreHil ) | |
| 11 | 3 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 12 | simpr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) | |
| 13 | 1 2 | cphcjcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( ∗ ‘ 𝐴 ) ∈ 𝐾 ) |
| 14 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 15 | 14 | subrgmcl | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ∧ ( ∗ ‘ 𝐴 ) ∈ 𝐾 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ 𝐾 ) |
| 16 | 11 12 13 15 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ 𝐾 ) |
| 17 | 7 | cjmulrcld | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) |
| 18 | 7 | cjmulge0d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 19 | 1 2 | cphsqrtcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ 𝐾 ∧ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ 𝐾 ) |
| 20 | 10 16 17 18 19 | syl13anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∈ 𝐾 ) |
| 21 | 9 20 | eqeltrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( abs ‘ 𝐴 ) ∈ 𝐾 ) |