This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | |- F = ( Scalar ` W ) |
|
| cphsca.k | |- K = ( Base ` F ) |
||
| Assertion | cphsqrtcl2 | |- ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) -> ( sqrt ` A ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | |- F = ( Scalar ` W ) |
|
| 2 | cphsca.k | |- K = ( Base ` F ) |
|
| 3 | sqrt0 | |- ( sqrt ` 0 ) = 0 |
|
| 4 | fveq2 | |- ( A = 0 -> ( sqrt ` A ) = ( sqrt ` 0 ) ) |
|
| 5 | id | |- ( A = 0 -> A = 0 ) |
|
| 6 | 3 4 5 | 3eqtr4a | |- ( A = 0 -> ( sqrt ` A ) = A ) |
| 7 | 6 | adantl | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A = 0 ) -> ( sqrt ` A ) = A ) |
| 8 | simpl2 | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A = 0 ) -> A e. K ) |
|
| 9 | 7 8 | eqeltrd | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A = 0 ) -> ( sqrt ` A ) e. K ) |
| 10 | simpl1 | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> W e. CPreHil ) |
|
| 11 | 1 2 | cphsubrg | |- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
| 12 | 10 11 | syl | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> K e. ( SubRing ` CCfld ) ) |
| 13 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 14 | 13 | subrgss | |- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
| 15 | 12 14 | syl | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> K C_ CC ) |
| 16 | simpl2 | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> A e. K ) |
|
| 17 | 1 2 | cphabscl | |- ( ( W e. CPreHil /\ A e. K ) -> ( abs ` A ) e. K ) |
| 18 | 10 16 17 | syl2anc | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( abs ` A ) e. K ) |
| 19 | 15 16 | sseldd | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> A e. CC ) |
| 20 | 19 | abscld | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
| 21 | 19 | absge0d | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> 0 <_ ( abs ` A ) ) |
| 22 | 1 2 | cphsqrtcl | |- ( ( W e. CPreHil /\ ( ( abs ` A ) e. K /\ ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) -> ( sqrt ` ( abs ` A ) ) e. K ) |
| 23 | 10 18 20 21 22 | syl13anc | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. K ) |
| 24 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 25 | 24 | subrgacl | |- ( ( K e. ( SubRing ` CCfld ) /\ ( abs ` A ) e. K /\ A e. K ) -> ( ( abs ` A ) + A ) e. K ) |
| 26 | 12 18 16 25 | syl3anc | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( abs ` A ) + A ) e. K ) |
| 27 | 1 2 | cphabscl | |- ( ( W e. CPreHil /\ ( ( abs ` A ) + A ) e. K ) -> ( abs ` ( ( abs ` A ) + A ) ) e. K ) |
| 28 | 10 26 27 | syl2anc | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. K ) |
| 29 | 15 26 | sseldd | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( abs ` A ) + A ) e. CC ) |
| 30 | simpl3 | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> -. -u A e. RR+ ) |
|
| 31 | 20 | recnd | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
| 32 | 31 19 | subnegd | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) |
| 33 | 32 | eqeq1d | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) |
| 34 | 19 | negcld | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> -u A e. CC ) |
| 35 | 31 34 | subeq0ad | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( abs ` A ) = -u A ) ) |
| 36 | 33 35 | bitr3d | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) + A ) = 0 <-> ( abs ` A ) = -u A ) ) |
| 37 | absrpcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
|
| 38 | 19 37 | sylancom | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
| 39 | eleq1 | |- ( ( abs ` A ) = -u A -> ( ( abs ` A ) e. RR+ <-> -u A e. RR+ ) ) |
|
| 40 | 38 39 | syl5ibcom | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( abs ` A ) = -u A -> -u A e. RR+ ) ) |
| 41 | 36 40 | sylbid | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) + A ) = 0 -> -u A e. RR+ ) ) |
| 42 | 41 | necon3bd | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( -. -u A e. RR+ -> ( ( abs ` A ) + A ) =/= 0 ) ) |
| 43 | 30 42 | mpd | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( abs ` A ) + A ) =/= 0 ) |
| 44 | 29 43 | absne0d | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) =/= 0 ) |
| 45 | 1 2 | cphdivcl | |- ( ( W e. CPreHil /\ ( ( ( abs ` A ) + A ) e. K /\ ( abs ` ( ( abs ` A ) + A ) ) e. K /\ ( abs ` ( ( abs ` A ) + A ) ) =/= 0 ) ) -> ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. K ) |
| 46 | 10 26 28 44 45 | syl13anc | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. K ) |
| 47 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 48 | 47 | subrgmcl | |- ( ( K e. ( SubRing ` CCfld ) /\ ( sqrt ` ( abs ` A ) ) e. K /\ ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. K ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. K ) |
| 49 | 12 23 46 48 | syl3anc | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. K ) |
| 50 | 15 49 | sseldd | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC ) |
| 51 | eqid | |- ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
|
| 52 | 51 | sqreulem | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) |
| 53 | 19 43 52 | syl2anc | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) |
| 54 | 53 | simp1d | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A ) |
| 55 | 53 | simp2d | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
| 56 | 53 | simp3d | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) |
| 57 | df-nel | |- ( ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ <-> -. ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e. RR+ ) |
|
| 58 | 56 57 | sylib | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> -. ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e. RR+ ) |
| 59 | 50 19 54 55 58 | eqsqrtd | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( sqrt ` A ) ) |
| 60 | 59 49 | eqeltrrd | |- ( ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) /\ A =/= 0 ) -> ( sqrt ` A ) e. K ) |
| 61 | 9 60 | pm2.61dane | |- ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) -> ( sqrt ` A ) e. K ) |