This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of the cosine of an integer multiple of _pi is 1. (Contributed by NM, 19-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coskpi | ⊢ ( 𝐾 ∈ ℤ → ( abs ‘ ( cos ‘ ( 𝐾 · π ) ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) | |
| 2 | 2cn | ⊢ 2 ∈ ℂ | |
| 3 | picn | ⊢ π ∈ ℂ | |
| 4 | mul12 | ⊢ ( ( 𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ ) → ( 𝐾 · ( 2 · π ) ) = ( 2 · ( 𝐾 · π ) ) ) | |
| 5 | 2 3 4 | mp3an23 | ⊢ ( 𝐾 ∈ ℂ → ( 𝐾 · ( 2 · π ) ) = ( 2 · ( 𝐾 · π ) ) ) |
| 6 | 1 5 | syl | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 · ( 2 · π ) ) = ( 2 · ( 𝐾 · π ) ) ) |
| 7 | 6 | fveq2d | ⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 𝐾 · ( 2 · π ) ) ) = ( cos ‘ ( 2 · ( 𝐾 · π ) ) ) ) |
| 8 | cos2kpi | ⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 𝐾 · ( 2 · π ) ) ) = 1 ) | |
| 9 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 10 | pire | ⊢ π ∈ ℝ | |
| 11 | remulcl | ⊢ ( ( 𝐾 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝐾 · π ) ∈ ℝ ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 · π ) ∈ ℝ ) |
| 13 | 12 | recnd | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 · π ) ∈ ℂ ) |
| 14 | cos2t | ⊢ ( ( 𝐾 · π ) ∈ ℂ → ( cos ‘ ( 2 · ( 𝐾 · π ) ) ) = ( ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) − 1 ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 2 · ( 𝐾 · π ) ) ) = ( ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) − 1 ) ) |
| 16 | 7 8 15 | 3eqtr3rd | ⊢ ( 𝐾 ∈ ℤ → ( ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) − 1 ) = 1 ) |
| 17 | 12 | recoscld | ⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 𝐾 · π ) ) ∈ ℝ ) |
| 18 | 17 | recnd | ⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 𝐾 · π ) ) ∈ ℂ ) |
| 19 | 18 | sqcld | ⊢ ( 𝐾 ∈ ℤ → ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ∈ ℂ ) |
| 20 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ∈ ℂ ) → ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) ∈ ℂ ) | |
| 21 | 2 19 20 | sylancr | ⊢ ( 𝐾 ∈ ℤ → ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) ∈ ℂ ) |
| 22 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 23 | subadd | ⊢ ( ( ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) − 1 ) = 1 ↔ ( 1 + 1 ) = ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) ) ) | |
| 24 | 22 22 23 | mp3an23 | ⊢ ( ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) ∈ ℂ → ( ( ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) − 1 ) = 1 ↔ ( 1 + 1 ) = ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) ) ) |
| 25 | 21 24 | syl | ⊢ ( 𝐾 ∈ ℤ → ( ( ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) − 1 ) = 1 ↔ ( 1 + 1 ) = ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) ) ) |
| 26 | 16 25 | mpbid | ⊢ ( 𝐾 ∈ ℤ → ( 1 + 1 ) = ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) ) |
| 27 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 28 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 29 | 27 28 | eqtr2i | ⊢ ( 1 + 1 ) = ( 2 · 1 ) |
| 30 | 26 29 | eqtr3di | ⊢ ( 𝐾 ∈ ℤ → ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) = ( 2 · 1 ) ) |
| 31 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 32 | mulcan | ⊢ ( ( ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) = ( 2 · 1 ) ↔ ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) = 1 ) ) | |
| 33 | 22 31 32 | mp3an23 | ⊢ ( ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ∈ ℂ → ( ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) = ( 2 · 1 ) ↔ ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) = 1 ) ) |
| 34 | 19 33 | syl | ⊢ ( 𝐾 ∈ ℤ → ( ( 2 · ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) ) = ( 2 · 1 ) ↔ ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) = 1 ) ) |
| 35 | 30 34 | mpbid | ⊢ ( 𝐾 ∈ ℤ → ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) = 1 ) |
| 36 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 37 | 35 36 | eqtr4di | ⊢ ( 𝐾 ∈ ℤ → ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 38 | 1re | ⊢ 1 ∈ ℝ | |
| 39 | sqabs | ⊢ ( ( ( cos ‘ ( 𝐾 · π ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( abs ‘ ( cos ‘ ( 𝐾 · π ) ) ) = ( abs ‘ 1 ) ) ) | |
| 40 | 17 38 39 | sylancl | ⊢ ( 𝐾 ∈ ℤ → ( ( ( cos ‘ ( 𝐾 · π ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( abs ‘ ( cos ‘ ( 𝐾 · π ) ) ) = ( abs ‘ 1 ) ) ) |
| 41 | 37 40 | mpbid | ⊢ ( 𝐾 ∈ ℤ → ( abs ‘ ( cos ‘ ( 𝐾 · π ) ) ) = ( abs ‘ 1 ) ) |
| 42 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 43 | 41 42 | eqtrdi | ⊢ ( 𝐾 ∈ ℤ → ( abs ‘ ( cos ‘ ( 𝐾 · π ) ) ) = 1 ) |