This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqabs | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( abs ‘ 𝐴 ) = ( abs ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqcl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ∈ ℝ ) | |
| 2 | sqge0 | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 ↑ 2 ) ) | |
| 3 | absid | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 5 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 6 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 7 | absexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
| 9 | 4 8 | eqtr3d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
| 10 | resqcl | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ↑ 2 ) ∈ ℝ ) | |
| 11 | sqge0 | ⊢ ( 𝐵 ∈ ℝ → 0 ≤ ( 𝐵 ↑ 2 ) ) | |
| 12 | absid | ⊢ ( ( ( 𝐵 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 ↑ 2 ) ) → ( abs ‘ ( 𝐵 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( 𝐵 ∈ ℝ → ( abs ‘ ( 𝐵 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) ) |
| 14 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 15 | absexp | ⊢ ( ( 𝐵 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( abs ‘ ( 𝐵 ↑ 2 ) ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ) | |
| 16 | 14 6 15 | sylancl | ⊢ ( 𝐵 ∈ ℝ → ( abs ‘ ( 𝐵 ↑ 2 ) ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ) |
| 17 | 13 16 | eqtr3d | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ↑ 2 ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ) |
| 18 | 9 17 | eqeqan12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) |
| 19 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 20 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
| 21 | 19 20 | jca | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
| 22 | abscl | ⊢ ( 𝐵 ∈ ℂ → ( abs ‘ 𝐵 ) ∈ ℝ ) | |
| 23 | absge0 | ⊢ ( 𝐵 ∈ ℂ → 0 ≤ ( abs ‘ 𝐵 ) ) | |
| 24 | 22 23 | jca | ⊢ ( 𝐵 ∈ ℂ → ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) |
| 25 | sq11 | ⊢ ( ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ∧ ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ↔ ( abs ‘ 𝐴 ) = ( abs ‘ 𝐵 ) ) ) | |
| 26 | 21 24 25 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ↔ ( abs ‘ 𝐴 ) = ( abs ‘ 𝐵 ) ) ) |
| 27 | 5 14 26 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ↔ ( abs ‘ 𝐴 ) = ( abs ‘ 𝐵 ) ) ) |
| 28 | 18 27 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( abs ‘ 𝐴 ) = ( abs ‘ 𝐵 ) ) ) |